llama-stack/docs/source/distributions/self_hosted_distro/ollama.md
Hardik Shah a84e7669f0
feat: Add a new template for dell (#978)
- Added new template `dell` and its documentation 
- Update docs 
- [minor] uv fix i came across 
- codegen for all templates 

Tested with 

```bash
export INFERENCE_PORT=8181
export DEH_URL=http://0.0.0.0:$INFERENCE_PORT
export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
export CHROMADB_HOST=localhost
export CHROMADB_PORT=6601
export CHROMA_URL=[http://$CHROMADB_HOST:$CHROMADB_PORT](about:blank)
export CUDA_VISIBLE_DEVICES=0
export LLAMA_STACK_PORT=8321

# build the stack template 
llama stack build --template=dell 

# start the TGI inference server 
podman run --rm -it --network host -v $HOME/.cache/huggingface:/data -e HF_TOKEN=$HF_TOKEN -p $INFERENCE_PORT:$INFERENCE_PORT --gpus $CUDA_VISIBLE_DEVICES [ghcr.io/huggingface/text-generation-inference](http://ghcr.io/huggingface/text-generation-inference) --dtype bfloat16 --usage-stats off --sharded false --cuda-memory-fraction 0.7 --model-id $INFERENCE_MODEL --port $INFERENCE_PORT --hostname 0.0.0.0

# start chroma-db for vector-io ( aka RAG )
podman run --rm -it --network host --name chromadb -v .:/chroma/chroma -e IS_PERSISTENT=TRUE chromadb/chroma:latest --port $CHROMADB_PORT --host $(hostname)

# build docker 
llama stack build --template=dell --image-type=container

# run llama stack server ( via docker )
podman run -it \
--network host \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
# NOTE: mount the llama-stack / llama-model directories if testing local changes 
-v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \ localhost/distribution-dell:dev \
--port $LLAMA_STACK_PORT  \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env DEH_URL=$DEH_URL \
--env CHROMA_URL=$CHROMA_URL

# test the server 
cd <PATH_TO_LLAMA_STACK_REPO>
LLAMA_STACK_BASE_URL=http://0.0.0.0:$LLAMA_STACK_PORT pytest -s -v tests/client-sdk/agents/test_agents.py

```

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
2025-02-06 14:14:39 -08:00

5.4 KiB


orphan: true

Ollama Distribution

:maxdepth: 2
:hidden:

self

The llamastack/distribution-ollama distribution consists of the following provider configurations.

API Provider(s)
agents inline::meta-reference
datasetio remote::huggingface, inline::localfs
eval inline::meta-reference
inference remote::ollama
safety inline::llama-guard
scoring inline::basic, inline::llm-as-judge, inline::braintrust
telemetry inline::meta-reference
tool_runtime remote::brave-search, remote::tavily-search, inline::code-interpreter, inline::rag-runtime
vector_io inline::faiss, remote::chromadb, remote::pgvector

You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.

Environment Variables

The following environment variables can be configured:

  • LLAMA_STACK_PORT: Port for the Llama Stack distribution server (default: 5001)
  • OLLAMA_URL: URL of the Ollama server (default: http://127.0.0.1:11434)
  • INFERENCE_MODEL: Inference model loaded into the Ollama server (default: meta-llama/Llama-3.2-3B-Instruct)
  • SAFETY_MODEL: Safety model loaded into the Ollama server (default: meta-llama/Llama-Guard-3-1B)

Setting up Ollama server

Please check the Ollama Documentation on how to install and run Ollama. After installing Ollama, you need to run ollama serve to start the server.

In order to load models, you can run:

export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"

# ollama names this model differently, and we must use the ollama name when loading the model
export OLLAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16"
ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m

If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model.

export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B"

# ollama names this model differently, and we must use the ollama name when loading the model
export OLLAMA_SAFETY_MODEL="llama-guard3:1b"
ollama run $OLLAMA_SAFETY_MODEL --keepalive 60m

Running Llama Stack

Now you are ready to run Llama Stack with Ollama as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.

Via Docker

This method allows you to get started quickly without having to build the distribution code.

export LLAMA_STACK_PORT=5001
docker run \
  -it \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  -v ~/.llama:/root/.llama \
  llamastack/distribution-ollama \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env OLLAMA_URL=http://host.docker.internal:11434

If you are using Llama Stack Safety / Shield APIs, use:

# You need a local checkout of llama-stack to run this, get it using
# git clone https://github.com/meta-llama/llama-stack.git
cd /path/to/llama-stack

docker run \
  -it \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  -v ~/.llama:/root/.llama \
  -v ./llama_stack/templates/ollama/run-with-safety.yaml:/root/my-run.yaml \
  llamastack/distribution-ollama \
  --yaml-config /root/my-run.yaml \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env SAFETY_MODEL=$SAFETY_MODEL \
  --env OLLAMA_URL=http://host.docker.internal:11434

Via Conda

Make sure you have done uv pip install llama-stack and have the Llama Stack CLI available.

export LLAMA_STACK_PORT=5001

llama stack build --template ollama --image-type conda
llama stack run ./run.yaml \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env OLLAMA_URL=http://localhost:11434

If you are using Llama Stack Safety / Shield APIs, use:

llama stack run ./run-with-safety.yaml \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env SAFETY_MODEL=$SAFETY_MODEL \
  --env OLLAMA_URL=http://localhost:11434

(Optional) Update Model Serving Configuration

Please check the [model_aliases](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/ollama.py#L45) for the supported Ollama models.

To serve a new model with ollama

ollama run <model_name>

To make sure that the model is being served correctly, run ollama ps to get a list of models being served by ollama.

$ ollama ps

NAME                         ID              SIZE     PROCESSOR    UNTIL
llama3.1:8b-instruct-fp16    4aacac419454    17 GB    100% GPU     4 minutes from now

To verify that the model served by ollama is correctly connected to Llama Stack server

$ llama-stack-client models list
+----------------------+----------------------+---------------+-----------------------------------------------+
| identifier           | llama_model          | provider_id   | metadata                                      |
+======================+======================+===============+===============================================+
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | ollama0       | {'ollama_model': 'llama3.1:8b-instruct-fp16'} |
+----------------------+----------------------+---------------+-----------------------------------------------+