LiteLLM Minor Fixes & Improvements (12/05/2024) (#7051)

* fix(cost_calculator.py): move to using `.get_model_info()` for cost per token calculations

ensures cost tracking is reliable - handles edge cases of parsing model cost map

* build(model_prices_and_context_window.json): add 'supports_response_schema' for select tgai models

Fixes https://github.com/BerriAI/litellm/pull/7037#discussion_r1872157329

* build(model_prices_and_context_window.json): remove 'pdf input' and 'vision' support from nova micro in model map

Bedrock docs indicate no support for micro - https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference-supported-models-features.html

* fix(converse_transformation.py): support amazon nova tool use

* fix(opentelemetry): Add missing LLM request type attribute to spans (#7041)

* feat(opentelemetry): add LLM request type attribute to spans

* lint

* fix: curl usage (#7038)

curl -d, --data <data> is lowercase d
curl -D, --dump-header <filename> is uppercase D

references:
https://curl.se/docs/manpage.html#-d
https://curl.se/docs/manpage.html#-D

* fix(spend_tracking.py): handle empty 'id' in model response - when creating spend log

Fixes https://github.com/BerriAI/litellm/issues/7023

* fix(streaming_chunk_builder.py): handle initial id being empty string

Fixes https://github.com/BerriAI/litellm/issues/7023

* fix(anthropic_passthrough_logging_handler.py): add end user cost tracking for anthropic pass through endpoint

* docs(pass_through/): refactor docs location + add table on supported features for pass through endpoints

* feat(anthropic_passthrough_logging_handler.py): support end user cost tracking via anthropic sdk

* docs(anthropic_completion.md): add docs on passing end user param for cost tracking on anthropic sdk

* fix(litellm_logging.py): use standard logging payload if present in kwargs

prevent datadog logging error for pass through endpoints

* docs(bedrock.md): add rerank api usage example to docs

* bugfix/change dummy tool name format (#7053)

* fix viewing keys (#7042)

* ui new build

* build(model_prices_and_context_window.json): add bedrock region models to model cost map (#7044)

* bye (#6982)

* (fix) litellm router.aspeech  (#6962)

* doc Migrating Databases

* fix aspeech on router

* test_audio_speech_router

* test_audio_speech_router

* docs show supported providers on batches api doc

* change dummy tool name format

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>

* fix: fix linting errors

* test: update test

* fix(litellm_logging.py): fix pass through check

* fix(test_otel_logging.py): fix test

* fix(cost_calculator.py): update handling for cost per second

* fix(cost_calculator.py): fix cost check

* test: fix test

* (fix) adding public routes when using custom header  (#7045)

* get_api_key_from_custom_header

* add test_get_api_key_from_custom_header

* fix testing use 1 file for test user api key auth

* fix test user api key auth

* test_custom_api_key_header_name

* build: update ui build

---------

Co-authored-by: Doron Kopit <83537683+doronkopit5@users.noreply.github.com>
Co-authored-by: lloydchang <lloydchang@gmail.com>
Co-authored-by: hgulersen <haymigulersen@gmail.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>
This commit is contained in:
Krish Dholakia 2024-12-06 14:29:53 -08:00 committed by GitHub
parent 56956fd6e7
commit 92a7e8e3e9
108 changed files with 561 additions and 356 deletions

View file

@ -5,6 +5,13 @@ import TabItem from '@theme/TabItem';
Pass-through endpoints for Anthropic - call provider-specific endpoint, in native format (no translation).
| Feature | Supported | Notes |
|-------|-------|-------|
| Cost Tracking | ✅ | supports all models on `/messages` endpoint |
| Logging | ✅ | works across all integrations |
| End-user Tracking | ✅ | disable prometheus tracking via `litellm.disable_end_user_cost_tracking_prometheus_only`|
| Streaming | ✅ | |
Just replace `https://api.anthropic.com` with `LITELLM_PROXY_BASE_URL/anthropic`
#### **Example Usage**
@ -317,7 +324,7 @@ curl --request POST \
```
### Send `litellm_metadata` (tags)
### Send `litellm_metadata` (tags, end-user cost tracking)
<Tabs>
<TabItem value="curl" label="curl">
@ -335,7 +342,8 @@ curl --request POST \
{"role": "user", "content": "Hello, world"}
],
"litellm_metadata": {
"tags": ["test-tag-1", "test-tag-2"]
"tags": ["test-tag-1", "test-tag-2"],
"user": "test-user" # track end-user/customer cost
}
}'
```
@ -359,9 +367,15 @@ response = client.messages.create(
],
extra_body={
"litellm_metadata": {
"tags": ["test-tag-1", "test-tag-2"]
"tags": ["test-tag-1", "test-tag-2"],
"user": "test-user" # track end-user/customer cost
}
},
## OR##
metadata={ # anthropic native param - https://docs.anthropic.com/en/api/messages
"user_id": "test-user" # track end-user/customer cost
}
)
print(response)

View file

@ -1,7 +1,14 @@
# Bedrock SDK
# Bedrock (boto3) SDK
Pass-through endpoints for Bedrock - call provider-specific endpoint, in native format (no translation).
| Feature | Supported | Notes |
|-------|-------|-------|
| Cost Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
| Logging | ✅ | works across all integrations |
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
| Streaming | ✅ | |
Just replace `https://bedrock-runtime.{aws_region_name}.amazonaws.com` with `LITELLM_PROXY_BASE_URL/bedrock` 🚀
#### **Example Usage**

View file

@ -2,6 +2,13 @@
Pass-through endpoints for Cohere - call provider-specific endpoint, in native format (no translation).
| Feature | Supported | Notes |
|-------|-------|-------|
| Cost Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
| Logging | ✅ | works across all integrations |
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
| Streaming | ✅ | |
Just replace `https://api.cohere.com` with `LITELLM_PROXY_BASE_URL/cohere` 🚀
#### **Example Usage**

View file

@ -7,6 +7,14 @@ import TabItem from '@theme/TabItem';
Pass-through endpoints for Google AI Studio - call provider-specific endpoint, in native format (no translation).
| Feature | Supported | Notes |
|-------|-------|-------|
| Cost Tracking | ✅ | supports all models on `/generateContent` endpoint |
| Logging | ✅ | works across all integrations |
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
| Streaming | ✅ | |
Just replace `https://generativelanguage.googleapis.com` with `LITELLM_PROXY_BASE_URL/gemini`
#### **Example Usage**

View file

@ -6,6 +6,13 @@ import TabItem from '@theme/TabItem';
Pass-through endpoints for Vertex AI - call provider-specific endpoint, in native format (no translation).
| Feature | Supported | Notes |
|-------|-------|-------|
| Cost Tracking | ✅ | supports all models on `/generateContent` endpoint |
| Logging | ✅ | works across all integrations |
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
| Streaming | ✅ | |
Just replace `https://REGION-aiplatform.googleapis.com` with `LITELLM_PROXY_BASE_URL/vertex_ai`

View file

@ -1295,4 +1295,81 @@ print(f"response: {response}")
|----------------------|---------------------------------------------|
| Stable Diffusion 3 - v0 | `embedding(model="bedrock/stability.stability.sd3-large-v1:0", prompt=prompt)` |
| Stable Diffusion - v0 | `embedding(model="bedrock/stability.stable-diffusion-xl-v0", prompt=prompt)` |
| Stable Diffusion - v0 | `embedding(model="bedrock/stability.stable-diffusion-xl-v1", prompt=prompt)` |
| Stable Diffusion - v0 | `embedding(model="bedrock/stability.stable-diffusion-xl-v1", prompt=prompt)` |
## Rerank API
Use Bedrock's Rerank API in the Cohere `/rerank` format.
Supported Cohere Rerank Params
- `model` - the foundation model ARN
- `query` - the query to rerank against
- `documents` - the list of documents to rerank
- `top_n` - the number of results to return
<Tabs>
<TabItem label="SDK" value="sdk">
```python
from litellm import rerank
import os
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
response = rerank(
model="bedrock/arn:aws:bedrock:us-west-2::foundation-model/amazon.rerank-v1:0", # provide the model ARN - get this here https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/bedrock/client/list_foundation_models.html
query="hello",
documents=["hello", "world"],
top_n=2,
)
print(response)
```
</TabItem>
<TabItem label="PROXY" value="proxy">
1. Setup config.yaml
```yaml
model_list:
- model_name: bedrock-rerank
litellm_params:
model: bedrock/arn:aws:bedrock:us-west-2::foundation-model/amazon.rerank-v1:0
aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID
aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY
aws_region_name: os.environ/AWS_REGION_NAME
```
2. Start proxy server
```bash
litellm --config config.yaml
# RUNNING on http://0.0.0.0:4000
```
3. Test it!
```bash
curl http://0.0.0.0:4000/rerank \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"model": "bedrock-rerank",
"query": "What is the capital of the United States?",
"documents": [
"Carson City is the capital city of the American state of Nevada.",
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean. Its capital is Saipan.",
"Washington, D.C. is the capital of the United States.",
"Capital punishment has existed in the United States since before it was a country."
],
"top_n": 3
}'
```
</TabItem>
</Tabs>

View file

@ -116,7 +116,7 @@ $ litellm --config /path/to/config.yaml
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-D '{
-d '{
"model": "gemini-pro",
"messages": [
{"role": "user", "content": "List 5 popular cookie recipes."}
@ -187,7 +187,7 @@ $ litellm --config /path/to/config.yaml
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-D '{
-d '{
"model": "gemini-pro",
"messages": [
{"role": "user", "content": "List 5 popular cookie recipes."}
@ -337,7 +337,7 @@ $ litellm --config /path/to/config.yaml
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-D '{
-d '{
"model": "gemini-pro",
"messages": [
{"role": "user", "content": "List 5 popular cookie recipes."}

View file

@ -114,4 +114,5 @@ curl http://0.0.0.0:4000/rerank \
| Cohere | [Usage](#quick-start) |
| Together AI| [Usage](../docs/providers/togetherai) |
| Azure AI| [Usage](../docs/providers/azure_ai) |
| Jina AI| [Usage](../docs/providers/jina_ai) |
| Jina AI| [Usage](../docs/providers/jina_ai) |
| AWS Bedrock| [Usage](../docs/providers/bedrock#rerank-api) |

View file

@ -65,12 +65,6 @@ const sidebars = {
items: [
"proxy/user_keys",
"proxy/response_headers",
"pass_through/vertex_ai",
"pass_through/google_ai_studio",
"pass_through/cohere",
"pass_through/anthropic_completion",
"pass_through/bedrock",
"pass_through/langfuse"
],
},
{
@ -259,17 +253,24 @@ const sidebars = {
"text_to_speech",
]
},
{
type: "category",
label: "Pass-through Endpoints (Anthropic SDK, etc.)",
items: [
"pass_through/vertex_ai",
"pass_through/google_ai_studio",
"pass_through/cohere",
"pass_through/anthropic_completion",
"pass_through/bedrock",
"pass_through/langfuse",
],
},
"rerank",
"assistants",
"batches",
"realtime",
"fine_tuning",
"moderation",
{
type: "link",
label: "Use LiteLLM Proxy with Vertex, Bedrock SDK",
href: "/docs/pass_through/vertex_ai",
},
],
},
{

View file

@ -262,7 +262,7 @@ _litellm_completion_params = [
"proxy_server_request",
"preset_cache_key",
]
_current_cost = 0 # private variable, used if max budget is set
_current_cost = 0.0 # private variable, used if max budget is set
error_logs: Dict = {}
add_function_to_prompt: bool = (
False # if function calling not supported by api, append function call details to system prompt

View file

@ -283,142 +283,48 @@ def cost_per_token( # noqa: PLR0915
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
)
elif model in model_cost_ref:
print_verbose(f"Success: model={model} in model_cost_map")
print_verbose(
f"prompt_tokens={prompt_tokens}; completion_tokens={completion_tokens}"
else:
model_info = litellm.get_model_info(
model=model, custom_llm_provider=custom_llm_provider
)
if (
model_cost_ref[model].get("input_cost_per_token", None) is not None
and model_cost_ref[model].get("output_cost_per_token", None) is not None
):
if model_info["input_cost_per_token"] > 0:
## COST PER TOKEN ##
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
model_info["input_cost_per_token"] * prompt_tokens
)
elif (
model_cost_ref[model].get("output_cost_per_second", None) is not None
model_info.get("input_cost_per_second", None) is not None
and response_time_ms is not None
):
print_verbose(
f"For model={model} - output_cost_per_second: {model_cost_ref[model].get('output_cost_per_second')}; response time: {response_time_ms}"
)
## COST PER SECOND ##
prompt_tokens_cost_usd_dollar = 0
completion_tokens_cost_usd_dollar = (
model_cost_ref[model]["output_cost_per_second"]
* response_time_ms
/ 1000
)
elif (
model_cost_ref[model].get("input_cost_per_second", None) is not None
and response_time_ms is not None
):
print_verbose(
f"For model={model} - input_cost_per_second: {model_cost_ref[model].get('input_cost_per_second')}; response time: {response_time_ms}"
f"For model={model} - input_cost_per_second: {model_info.get('input_cost_per_second')}; response time: {response_time_ms}"
)
## COST PER SECOND ##
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_second"] * response_time_ms / 1000
model_info["input_cost_per_second"] * response_time_ms / 1000 # type: ignore
)
completion_tokens_cost_usd_dollar = 0.0
if model_info["output_cost_per_token"] > 0:
completion_tokens_cost_usd_dollar = (
model_info["output_cost_per_token"] * completion_tokens
)
elif (
model_info.get("output_cost_per_second", None) is not None
and response_time_ms is not None
):
print_verbose(
f"For model={model} - output_cost_per_second: {model_info.get('output_cost_per_second')}; response time: {response_time_ms}"
)
## COST PER SECOND ##
completion_tokens_cost_usd_dollar = (
model_info["output_cost_per_second"] * response_time_ms / 1000 # type: ignore
)
print_verbose(
f"Returned custom cost for model={model} - prompt_tokens_cost_usd_dollar: {prompt_tokens_cost_usd_dollar}, completion_tokens_cost_usd_dollar: {completion_tokens_cost_usd_dollar}"
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif "ft:gpt-3.5-turbo" in model:
print_verbose(f"Cost Tracking: {model} is an OpenAI FinteTuned LLM")
# fuzzy match ft:gpt-3.5-turbo:abcd-id-cool-litellm
prompt_tokens_cost_usd_dollar = (
model_cost_ref["ft:gpt-3.5-turbo"]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref["ft:gpt-3.5-turbo"]["output_cost_per_token"]
* completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif "ft:gpt-4-0613" in model:
print_verbose(f"Cost Tracking: {model} is an OpenAI FinteTuned LLM")
# fuzzy match ft:gpt-4-0613:abcd-id-cool-litellm
prompt_tokens_cost_usd_dollar = (
model_cost_ref["ft:gpt-4-0613"]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref["ft:gpt-4-0613"]["output_cost_per_token"] * completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif "ft:gpt-4o-2024-05-13" in model:
print_verbose(f"Cost Tracking: {model} is an OpenAI FinteTuned LLM")
# fuzzy match ft:gpt-4o-2024-05-13:abcd-id-cool-litellm
prompt_tokens_cost_usd_dollar = (
model_cost_ref["ft:gpt-4o-2024-05-13"]["input_cost_per_token"]
* prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref["ft:gpt-4o-2024-05-13"]["output_cost_per_token"]
* completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif "ft:davinci-002" in model:
print_verbose(f"Cost Tracking: {model} is an OpenAI FinteTuned LLM")
# fuzzy match ft:davinci-002:abcd-id-cool-litellm
prompt_tokens_cost_usd_dollar = (
model_cost_ref["ft:davinci-002"]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref["ft:davinci-002"]["output_cost_per_token"]
* completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif "ft:babbage-002" in model:
print_verbose(f"Cost Tracking: {model} is an OpenAI FinteTuned LLM")
# fuzzy match ft:babbage-002:abcd-id-cool-litellm
prompt_tokens_cost_usd_dollar = (
model_cost_ref["ft:babbage-002"]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref["ft:babbage-002"]["output_cost_per_token"]
* completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif model in litellm.azure_llms:
verbose_logger.debug(f"Cost Tracking: {model} is an Azure LLM")
model = litellm.azure_llms[model]
verbose_logger.debug(
f"applying cost={model_cost_ref[model]['input_cost_per_token']} for prompt_tokens={prompt_tokens}"
)
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
)
verbose_logger.debug(
f"applying cost={model_cost_ref[model]['output_cost_per_token']} for completion_tokens={completion_tokens}"
)
completion_tokens_cost_usd_dollar = (
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif model in litellm.azure_embedding_models:
verbose_logger.debug(f"Cost Tracking: {model} is an Azure Embedding Model")
model = litellm.azure_embedding_models[model]
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
else:
# if model is not in model_prices_and_context_window.json. Raise an exception-let users know
error_str = f"Model not in model_prices_and_context_window.json. You passed model={model}, custom_llm_provider={custom_llm_provider}. Register pricing for model - https://docs.litellm.ai/docs/proxy/custom_pricing\n"
raise litellm.exceptions.NotFoundError( # type: ignore
message=error_str,
model=model,
llm_provider="",
)
def get_replicate_completion_pricing(completion_response: dict, total_time=0.0):

View file

@ -178,9 +178,6 @@ class DataDogLogger(CustomBatchLogger):
- instantly logs it on DD API
"""
try:
verbose_logger.debug(
"Datadog: Logging - Enters logging function for model %s", kwargs
)
if litellm.datadog_use_v1 is True:
dd_payload = self._create_v0_logging_payload(
kwargs=kwargs,
@ -224,6 +221,7 @@ class DataDogLogger(CustomBatchLogger):
pass
async def _log_async_event(self, kwargs, response_obj, start_time, end_time):
dd_payload = self.create_datadog_logging_payload(
kwargs=kwargs,
response_obj=response_obj,

View file

@ -476,6 +476,13 @@ class OpenTelemetry(CustomLogger):
value=kwargs.get("model"),
)
# The LLM request type
self.safe_set_attribute(
span=span,
key=SpanAttributes.LLM_REQUEST_TYPE,
value=standard_logging_payload["call_type"],
)
# The Generative AI Provider: Azure, OpenAI, etc.
self.safe_set_attribute(
span=span,

View file

@ -777,7 +777,12 @@ class Logging:
return None
def _success_handler_helper_fn(
self, result=None, start_time=None, end_time=None, cache_hit=None
self,
result=None,
start_time=None,
end_time=None,
cache_hit=None,
standard_logging_object: Optional[StandardLoggingPayload] = None,
):
try:
if start_time is None:
@ -795,7 +800,9 @@ class Logging:
## if model in model cost map - log the response cost
## else set cost to None
if (
result is not None and self.stream is not True
standard_logging_object is None
and result is not None
and self.stream is not True
): # handle streaming separately
if (
isinstance(result, ModelResponse)
@ -826,9 +833,11 @@ class Logging:
"metadata"
] = {}
self.model_call_details["litellm_params"]["metadata"][
self.model_call_details["litellm_params"]["metadata"][ # type: ignore
"hidden_params"
] = getattr(result, "_hidden_params", {})
] = getattr(
result, "_hidden_params", {}
)
## STANDARDIZED LOGGING PAYLOAD
self.model_call_details["standard_logging_object"] = (
@ -853,6 +862,10 @@ class Logging:
status="success",
)
)
elif standard_logging_object is not None:
self.model_call_details["standard_logging_object"] = (
standard_logging_object
)
else: # streaming chunks + image gen.
self.model_call_details["response_cost"] = None
@ -885,6 +898,7 @@ class Logging:
end_time=end_time,
result=result,
cache_hit=cache_hit,
standard_logging_object=kwargs.get("standard_logging_object", None),
)
# print(f"original response in success handler: {self.model_call_details['original_response']}")
try:
@ -896,7 +910,10 @@ class Logging:
] = None
if "complete_streaming_response" in self.model_call_details:
return # break out of this.
if self.stream:
if self.stream and (
isinstance(result, litellm.ModelResponse)
or isinstance(result, TextCompletionResponse)
):
complete_streaming_response: Optional[
Union[ModelResponse, TextCompletionResponse]
] = _assemble_complete_response_from_streaming_chunks(
@ -1315,6 +1332,8 @@ class Logging:
"atranscription", False
)
is not True
and self.call_type
!= CallTypes.pass_through.value # pass-through endpoints call async_log_success_event
): # custom logger class
if self.stream and complete_streaming_response is None:
callback.log_stream_event(
@ -1399,7 +1418,11 @@ class Logging:
"Logging Details LiteLLM-Async Success Call, cache_hit={}".format(cache_hit)
)
start_time, end_time, result = self._success_handler_helper_fn(
start_time=start_time, end_time=end_time, result=result, cache_hit=cache_hit
start_time=start_time,
end_time=end_time,
result=result,
cache_hit=cache_hit,
standard_logging_object=kwargs.get("standard_logging_object", None),
)
## BUILD COMPLETE STREAMED RESPONSE
if "async_complete_streaming_response" in self.model_call_details:
@ -1407,7 +1430,10 @@ class Logging:
complete_streaming_response: Optional[
Union[ModelResponse, TextCompletionResponse]
] = None
if self.stream is True:
if self.stream is True and (
isinstance(result, litellm.ModelResponse)
or isinstance(result, TextCompletionResponse)
):
complete_streaming_response: Optional[
Union[ModelResponse, TextCompletionResponse]
] = _assemble_complete_response_from_streaming_chunks(

View file

@ -47,9 +47,20 @@ class ChunkProcessor:
model_response._hidden_params = chunk.get("_hidden_params", {})
return model_response
@staticmethod
def _get_chunk_id(chunks: List[Dict[str, Any]]) -> str:
"""
Chunks:
[{"id": ""}, {"id": "1"}, {"id": "1"}]
"""
for chunk in chunks:
if chunk.get("id"):
return chunk["id"]
return ""
def build_base_response(self, chunks: List[Dict[str, Any]]) -> ModelResponse:
chunk = self.first_chunk
id = chunk["id"]
id = ChunkProcessor._get_chunk_id(chunks)
object = chunk["object"]
created = chunk["created"]
model = chunk["model"]

View file

@ -91,6 +91,7 @@ class AmazonConverseConfig:
or base_model.startswith("cohere")
or base_model.startswith("meta.llama3-1")
or base_model.startswith("meta.llama3-2")
or base_model.startswith("amazon.nova")
):
supported_params.append("tools")
@ -528,6 +529,8 @@ class AmazonConverseConfig:
Handle model names like - "us.meta.llama3-2-11b-instruct-v1:0" -> "meta.llama3-2-11b-instruct-v1"
AND "meta.llama3-2-11b-instruct-v1:0" -> "meta.llama3-2-11b-instruct-v1"
"""
if model.startswith("bedrock/"):
model = model.split("/")[1]
if model.startswith("converse/"):
model = model.split("/")[1]

View file

@ -4818,8 +4818,6 @@
"litellm_provider": "bedrock_converse",
"mode": "chat",
"supports_function_calling": true,
"supports_vision": true,
"supports_pdf_input": true,
"supports_prompt_caching": true
},
"amazon.nova-lite-v1:0": {
@ -6109,6 +6107,7 @@
"litellm_provider": "together_ai",
"supports_function_calling": true,
"supports_parallel_function_calling": true,
"supports_response_schema": true,
"mode": "chat"
},
"together_ai/meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": {
@ -6117,6 +6116,7 @@
"litellm_provider": "together_ai",
"supports_function_calling": true,
"supports_parallel_function_calling": true,
"supports_response_schema": true,
"mode": "chat"
},
"together_ai/meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo": {
@ -6133,12 +6133,14 @@
"litellm_provider": "together_ai",
"supports_function_calling": true,
"supports_parallel_function_calling": true,
"supports_response_schema": true,
"mode": "chat"
},
"together_ai/mistralai/Mistral-7B-Instruct-v0.1": {
"litellm_provider": "together_ai",
"supports_function_calling": true,
"supports_parallel_function_calling": true,
"supports_response_schema": true,
"mode": "chat"
},
"together_ai/togethercomputer/CodeLlama-34b-Instruct": {

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{11837:function(n,e,t){Promise.resolve().then(t.t.bind(t,99646,23)),Promise.resolve().then(t.t.bind(t,63385,23))},63385:function(){},99646:function(n){n.exports={style:{fontFamily:"'__Inter_12bbc4', '__Inter_Fallback_12bbc4'",fontStyle:"normal"},className:"__className_12bbc4"}}},function(n){n.O(0,[971,69,744],function(){return n(n.s=11837)}),_N_E=n.O()}]);

View file

@ -1 +0,0 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{87421:function(e,n,t){Promise.resolve().then(t.t.bind(t,99646,23)),Promise.resolve().then(t.t.bind(t,63385,23))},63385:function(){},99646:function(e){e.exports={style:{fontFamily:"'__Inter_86ef86', '__Inter_Fallback_86ef86'",fontStyle:"normal"},className:"__className_86ef86"}}},function(e){e.O(0,[971,69,744],function(){return e(e.s=87421)}),_N_E=e.O()}]);

View file

@ -1 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[461],{61994:function(e,s,t){Promise.resolve().then(t.bind(t,667))},667:function(e,s,t){"use strict";t.r(s),t.d(s,{default:function(){return g}});var l=t(57437),n=t(2265),a=t(47907),i=t(2179),r=t(18190),o=t(13810),c=t(10384),u=t(46453),d=t(71801),m=t(52273),h=t(42440),x=t(30953),f=t(777),p=t(37963),j=t(60620),_=t(13565);function g(){let[e]=j.Z.useForm(),s=(0,a.useSearchParams)();!function(e){console.log("COOKIES",document.cookie);let s=document.cookie.split("; ").find(s=>s.startsWith(e+"="));s&&s.split("=")[1]}("token");let t=s.get("invitation_id"),[g,Z]=(0,n.useState)(null),[k,w]=(0,n.useState)(""),[S,b]=(0,n.useState)(""),[N,v]=(0,n.useState)(null),[y,E]=(0,n.useState)(""),[I,O]=(0,n.useState)("");return(0,n.useEffect)(()=>{t&&(0,f.W_)(t).then(e=>{let s=e.login_url;console.log("login_url:",s),E(s);let t=e.token,l=(0,p.o)(t);O(t),console.log("decoded:",l),Z(l.key),console.log("decoded user email:",l.user_email),b(l.user_email),v(l.user_id)})},[t]),(0,l.jsx)("div",{className:"mx-auto w-full max-w-md mt-10",children:(0,l.jsxs)(o.Z,{children:[(0,l.jsx)(h.Z,{className:"text-sm mb-5 text-center",children:"\uD83D\uDE85 LiteLLM"}),(0,l.jsx)(h.Z,{className:"text-xl",children:"Sign up"}),(0,l.jsx)(d.Z,{children:"Claim your user account to login to Admin UI."}),(0,l.jsx)(r.Z,{className:"mt-4",title:"SSO",icon:x.GH$,color:"sky",children:(0,l.jsxs)(u.Z,{numItems:2,className:"flex justify-between items-center",children:[(0,l.jsx)(c.Z,{children:"SSO is under the Enterprise Tirer."}),(0,l.jsx)(c.Z,{children:(0,l.jsx)(i.Z,{variant:"primary",className:"mb-2",children:(0,l.jsx)("a",{href:"https://forms.gle/W3U4PZpJGFHWtHyA9",target:"_blank",children:"Get Free Trial"})})})]})}),(0,l.jsxs)(j.Z,{className:"mt-10 mb-5 mx-auto",layout:"vertical",onFinish:e=>{console.log("in handle submit. accessToken:",g,"token:",I,"formValues:",e),g&&I&&(e.user_email=S,N&&t&&(0,f.m_)(g,t,N,e.password).then(e=>{var s;let t="/ui/";t+="?userID="+((null===(s=e.data)||void 0===s?void 0:s.user_id)||e.user_id),document.cookie="token="+I,console.log("redirecting to:",t),window.location.href=t}))},children:[(0,l.jsxs)(l.Fragment,{children:[(0,l.jsx)(j.Z.Item,{label:"Email Address",name:"user_email",children:(0,l.jsx)(m.Z,{type:"email",disabled:!0,value:S,defaultValue:S,className:"max-w-md"})}),(0,l.jsx)(j.Z.Item,{label:"Password",name:"password",rules:[{required:!0,message:"password required to sign up"}],help:"Create a password for your account",children:(0,l.jsx)(m.Z,{placeholder:"",type:"password",className:"max-w-md"})})]}),(0,l.jsx)("div",{className:"mt-10",children:(0,l.jsx)(_.ZP,{htmlType:"submit",children:"Sign Up"})})]})]})})}}},function(e){e.O(0,[665,902,684,777,971,69,744],function(){return e(e.s=61994)}),_N_E=e.O()}]);
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[461],{20723:function(e,s,t){Promise.resolve().then(t.bind(t,667))},667:function(e,s,t){"use strict";t.r(s),t.d(s,{default:function(){return g}});var l=t(57437),n=t(2265),a=t(47907),i=t(2179),r=t(18190),o=t(13810),c=t(10384),u=t(46453),d=t(71801),m=t(52273),h=t(42440),x=t(30953),f=t(777),p=t(37963),j=t(60620),_=t(13565);function g(){let[e]=j.Z.useForm(),s=(0,a.useSearchParams)();!function(e){console.log("COOKIES",document.cookie);let s=document.cookie.split("; ").find(s=>s.startsWith(e+"="));s&&s.split("=")[1]}("token");let t=s.get("invitation_id"),[g,Z]=(0,n.useState)(null),[k,w]=(0,n.useState)(""),[S,b]=(0,n.useState)(""),[N,v]=(0,n.useState)(null),[y,E]=(0,n.useState)(""),[I,O]=(0,n.useState)("");return(0,n.useEffect)(()=>{t&&(0,f.W_)(t).then(e=>{let s=e.login_url;console.log("login_url:",s),E(s);let t=e.token,l=(0,p.o)(t);O(t),console.log("decoded:",l),Z(l.key),console.log("decoded user email:",l.user_email),b(l.user_email),v(l.user_id)})},[t]),(0,l.jsx)("div",{className:"mx-auto w-full max-w-md mt-10",children:(0,l.jsxs)(o.Z,{children:[(0,l.jsx)(h.Z,{className:"text-sm mb-5 text-center",children:"\uD83D\uDE85 LiteLLM"}),(0,l.jsx)(h.Z,{className:"text-xl",children:"Sign up"}),(0,l.jsx)(d.Z,{children:"Claim your user account to login to Admin UI."}),(0,l.jsx)(r.Z,{className:"mt-4",title:"SSO",icon:x.GH$,color:"sky",children:(0,l.jsxs)(u.Z,{numItems:2,className:"flex justify-between items-center",children:[(0,l.jsx)(c.Z,{children:"SSO is under the Enterprise Tirer."}),(0,l.jsx)(c.Z,{children:(0,l.jsx)(i.Z,{variant:"primary",className:"mb-2",children:(0,l.jsx)("a",{href:"https://forms.gle/W3U4PZpJGFHWtHyA9",target:"_blank",children:"Get Free Trial"})})})]})}),(0,l.jsxs)(j.Z,{className:"mt-10 mb-5 mx-auto",layout:"vertical",onFinish:e=>{console.log("in handle submit. accessToken:",g,"token:",I,"formValues:",e),g&&I&&(e.user_email=S,N&&t&&(0,f.m_)(g,t,N,e.password).then(e=>{var s;let t="/ui/";t+="?userID="+((null===(s=e.data)||void 0===s?void 0:s.user_id)||e.user_id),document.cookie="token="+I,console.log("redirecting to:",t),window.location.href=t}))},children:[(0,l.jsxs)(l.Fragment,{children:[(0,l.jsx)(j.Z.Item,{label:"Email Address",name:"user_email",children:(0,l.jsx)(m.Z,{type:"email",disabled:!0,value:S,defaultValue:S,className:"max-w-md"})}),(0,l.jsx)(j.Z.Item,{label:"Password",name:"password",rules:[{required:!0,message:"password required to sign up"}],help:"Create a password for your account",children:(0,l.jsx)(m.Z,{placeholder:"",type:"password",className:"max-w-md"})})]}),(0,l.jsx)("div",{className:"mt-10",children:(0,l.jsx)(_.ZP,{htmlType:"submit",children:"Sign Up"})})]})]})})}}},function(e){e.O(0,[665,902,684,777,971,69,744],function(){return e(e.s=20723)}),_N_E=e.O()}]);

View file

@ -1 +0,0 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[461],{61994:function(e,s,t){Promise.resolve().then(t.bind(t,667))},667:function(e,s,t){"use strict";t.r(s),t.d(s,{default:function(){return g}});var l=t(57437),n=t(2265),a=t(47907),i=t(2179),r=t(18190),o=t(13810),c=t(10384),u=t(46453),d=t(71801),m=t(52273),h=t(42440),x=t(30953),f=t(777),p=t(37963),j=t(60620),_=t(13565);function g(){let[e]=j.Z.useForm(),s=(0,a.useSearchParams)();!function(e){console.log("COOKIES",document.cookie);let s=document.cookie.split("; ").find(s=>s.startsWith(e+"="));s&&s.split("=")[1]}("token");let t=s.get("invitation_id"),[g,Z]=(0,n.useState)(null),[k,w]=(0,n.useState)(""),[S,b]=(0,n.useState)(""),[N,v]=(0,n.useState)(null),[y,E]=(0,n.useState)(""),[I,O]=(0,n.useState)("");return(0,n.useEffect)(()=>{t&&(0,f.W_)(t).then(e=>{let s=e.login_url;console.log("login_url:",s),E(s);let t=e.token,l=(0,p.o)(t);O(t),console.log("decoded:",l),Z(l.key),console.log("decoded user email:",l.user_email),b(l.user_email),v(l.user_id)})},[t]),(0,l.jsx)("div",{className:"mx-auto w-full max-w-md mt-10",children:(0,l.jsxs)(o.Z,{children:[(0,l.jsx)(h.Z,{className:"text-sm mb-5 text-center",children:"\uD83D\uDE85 LiteLLM"}),(0,l.jsx)(h.Z,{className:"text-xl",children:"Sign up"}),(0,l.jsx)(d.Z,{children:"Claim your user account to login to Admin UI."}),(0,l.jsx)(r.Z,{className:"mt-4",title:"SSO",icon:x.GH$,color:"sky",children:(0,l.jsxs)(u.Z,{numItems:2,className:"flex justify-between items-center",children:[(0,l.jsx)(c.Z,{children:"SSO is under the Enterprise Tirer."}),(0,l.jsx)(c.Z,{children:(0,l.jsx)(i.Z,{variant:"primary",className:"mb-2",children:(0,l.jsx)("a",{href:"https://forms.gle/W3U4PZpJGFHWtHyA9",target:"_blank",children:"Get Free Trial"})})})]})}),(0,l.jsxs)(j.Z,{className:"mt-10 mb-5 mx-auto",layout:"vertical",onFinish:e=>{console.log("in handle submit. accessToken:",g,"token:",I,"formValues:",e),g&&I&&(e.user_email=S,N&&t&&(0,f.m_)(g,t,N,e.password).then(e=>{var s;let t="/ui/";t+="?userID="+((null===(s=e.data)||void 0===s?void 0:s.user_id)||e.user_id),document.cookie="token="+I,console.log("redirecting to:",t),window.location.href=t}))},children:[(0,l.jsxs)(l.Fragment,{children:[(0,l.jsx)(j.Z.Item,{label:"Email Address",name:"user_email",children:(0,l.jsx)(m.Z,{type:"email",disabled:!0,value:S,defaultValue:S,className:"max-w-md"})}),(0,l.jsx)(j.Z.Item,{label:"Password",name:"password",rules:[{required:!0,message:"password required to sign up"}],help:"Create a password for your account",children:(0,l.jsx)(m.Z,{placeholder:"",type:"password",className:"max-w-md"})})]}),(0,l.jsx)("div",{className:"mt-10",children:(0,l.jsx)(_.ZP,{htmlType:"submit",children:"Sign Up"})})]})]})})}}},function(e){e.O(0,[665,902,684,777,971,69,744],function(){return e(e.s=61994)}),_N_E=e.O()}]);

View file

@ -1 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{32028:function(e,n,t){Promise.resolve().then(t.t.bind(t,47690,23)),Promise.resolve().then(t.t.bind(t,48955,23)),Promise.resolve().then(t.t.bind(t,5613,23)),Promise.resolve().then(t.t.bind(t,11902,23)),Promise.resolve().then(t.t.bind(t,31778,23)),Promise.resolve().then(t.t.bind(t,77831,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,69],function(){return n(35317),n(32028)}),_N_E=e.O()}]);
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{70377:function(e,n,t){Promise.resolve().then(t.t.bind(t,47690,23)),Promise.resolve().then(t.t.bind(t,48955,23)),Promise.resolve().then(t.t.bind(t,5613,23)),Promise.resolve().then(t.t.bind(t,11902,23)),Promise.resolve().then(t.t.bind(t,31778,23)),Promise.resolve().then(t.t.bind(t,77831,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,69],function(){return n(35317),n(70377)}),_N_E=e.O()}]);

View file

@ -1 +1 @@
!function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/00256a1984d35914.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}();
!function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/ea3759ed931c00b2.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}();

View file

@ -1,4 +1,4 @@
@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/55c55f0601d81cf3-s.woff2) format("woff2");unicode-range:u+0460-052f,u+1c80-1c88,u+20b4,u+2de0-2dff,u+a640-a69f,u+fe2e-fe2f}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/26a46d62cd723877-s.woff2) format("woff2");unicode-range:u+0301,u+0400-045f,u+0490-0491,u+04b0-04b1,u+2116}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/97e0cb1ae144a2a9-s.woff2) format("woff2");unicode-range:u+1f??}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/581909926a08bbc8-s.woff2) format("woff2");unicode-range:u+0370-0377,u+037a-037f,u+0384-038a,u+038c,u+038e-03a1,u+03a3-03ff}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/df0a9ae256c0569c-s.woff2) format("woff2");unicode-range:u+0102-0103,u+0110-0111,u+0128-0129,u+0168-0169,u+01a0-01a1,u+01af-01b0,u+0300-0301,u+0303-0304,u+0308-0309,u+0323,u+0329,u+1ea0-1ef9,u+20ab}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/6d93bde91c0c2823-s.woff2) format("woff2");unicode-range:u+0100-02af,u+0304,u+0308,u+0329,u+1e00-1e9f,u+1ef2-1eff,u+2020,u+20a0-20ab,u+20ad-20c0,u+2113,u+2c60-2c7f,u+a720-a7ff}@font-face{font-family:__Inter_86ef86;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/a34f9d1faa5f3315-s.p.woff2) format("woff2");unicode-range:u+00??,u+0131,u+0152-0153,u+02bb-02bc,u+02c6,u+02da,u+02dc,u+0304,u+0308,u+0329,u+2000-206f,u+2074,u+20ac,u+2122,u+2191,u+2193,u+2212,u+2215,u+feff,u+fffd}@font-face{font-family:__Inter_Fallback_86ef86;src:local("Arial");ascent-override:90.20%;descent-override:22.48%;line-gap-override:0.00%;size-adjust:107.40%}.__className_86ef86{font-family:__Inter_86ef86,__Inter_Fallback_86ef86;font-style:normal}
@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/ec159349637c90ad-s.woff2) format("woff2");unicode-range:u+0460-052f,u+1c80-1c88,u+20b4,u+2de0-2dff,u+a640-a69f,u+fe2e-fe2f}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/513657b02c5c193f-s.woff2) format("woff2");unicode-range:u+0301,u+0400-045f,u+0490-0491,u+04b0-04b1,u+2116}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/fd4db3eb5472fc27-s.woff2) format("woff2");unicode-range:u+1f??}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/51ed15f9841b9f9d-s.woff2) format("woff2");unicode-range:u+0370-0377,u+037a-037f,u+0384-038a,u+038c,u+038e-03a1,u+03a3-03ff}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/05a31a2ca4975f99-s.woff2) format("woff2");unicode-range:u+0102-0103,u+0110-0111,u+0128-0129,u+0168-0169,u+01a0-01a1,u+01af-01b0,u+0300-0301,u+0303-0304,u+0308-0309,u+0323,u+0329,u+1ea0-1ef9,u+20ab}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/d6b16ce4a6175f26-s.woff2) format("woff2");unicode-range:u+0100-02af,u+0304,u+0308,u+0329,u+1e00-1e9f,u+1ef2-1eff,u+2020,u+20a0-20ab,u+20ad-20c0,u+2113,u+2c60-2c7f,u+a720-a7ff}@font-face{font-family:__Inter_12bbc4;font-style:normal;font-weight:100 900;font-display:swap;src:url(/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2) format("woff2");unicode-range:u+00??,u+0131,u+0152-0153,u+02bb-02bc,u+02c6,u+02da,u+02dc,u+0304,u+0308,u+0329,u+2000-206f,u+2074,u+20ac,u+2122,u+2191,u+2193,u+2212,u+2215,u+feff,u+fffd}@font-face{font-family:__Inter_Fallback_12bbc4;src:local("Arial");ascent-override:90.20%;descent-override:22.48%;line-gap-override:0.00%;size-adjust:107.40%}.__className_12bbc4{font-family:__Inter_12bbc4,__Inter_Fallback_12bbc4;font-style:normal}
/*
! tailwindcss v3.4.1 | MIT License | https://tailwindcss.com

View file

@ -1 +1 @@
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-e8ad0a25b0c46e0b.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-f593049e31b05aeb.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-8316d07d1f41e39f.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-e8ad0a25b0c46e0b.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/a34f9d1faa5f3315-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/00256a1984d35914.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[82989,[\"665\",\"static/chunks/3014691f-b24e8254c7593934.js\",\"936\",\"static/chunks/2f6dbc85-cac2949a76539886.js\",\"902\",\"static/chunks/902-292bb6a83427dbc7.js\",\"131\",\"static/chunks/131-4ee1d633e8928742.js\",\"684\",\"static/chunks/684-16b194c83a169f6d.js\",\"626\",\"static/chunks/626-e864afd3bac4dc07.js\",\"777\",\"static/chunks/777-9d9df0b75010dbf9.js\",\"931\",\"static/chunks/app/page-73a309570472d908.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/00256a1984d35914.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"Zz9ikKRv9WdfY0W6yeEPB\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_86ef86\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-b9c71b6f9761a436.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-f593049e31b05aeb.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-8316d07d1f41e39f.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-096338c8e1915716.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-b9c71b6f9761a436.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/ea3759ed931c00b2.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[82989,[\"665\",\"static/chunks/3014691f-b24e8254c7593934.js\",\"936\",\"static/chunks/2f6dbc85-cac2949a76539886.js\",\"902\",\"static/chunks/902-58bf23027703b2e8.js\",\"131\",\"static/chunks/131-4ee1d633e8928742.js\",\"684\",\"static/chunks/684-16b194c83a169f6d.js\",\"626\",\"static/chunks/626-0c564a21577c9c53.js\",\"777\",\"static/chunks/777-9d9df0b75010dbf9.js\",\"931\",\"static/chunks/app/page-11600ea1ced76124.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/ea3759ed931c00b2.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"eIYu8vzcOp0w17kIm3LKw\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_12bbc4\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>

View file

@ -1,7 +1,7 @@
2:I[77831,[],""]
3:I[82989,["665","static/chunks/3014691f-b24e8254c7593934.js","936","static/chunks/2f6dbc85-cac2949a76539886.js","902","static/chunks/902-292bb6a83427dbc7.js","131","static/chunks/131-4ee1d633e8928742.js","684","static/chunks/684-16b194c83a169f6d.js","626","static/chunks/626-e864afd3bac4dc07.js","777","static/chunks/777-9d9df0b75010dbf9.js","931","static/chunks/app/page-73a309570472d908.js"],""]
3:I[82989,["665","static/chunks/3014691f-b24e8254c7593934.js","936","static/chunks/2f6dbc85-cac2949a76539886.js","902","static/chunks/902-58bf23027703b2e8.js","131","static/chunks/131-4ee1d633e8928742.js","684","static/chunks/684-16b194c83a169f6d.js","626","static/chunks/626-0c564a21577c9c53.js","777","static/chunks/777-9d9df0b75010dbf9.js","931","static/chunks/app/page-11600ea1ced76124.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["Zz9ikKRv9WdfY0W6yeEPB",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_86ef86","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/00256a1984d35914.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
0:["eIYu8vzcOp0w17kIm3LKw",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/ea3759ed931c00b2.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

File diff suppressed because one or more lines are too long

View file

@ -1,7 +1,7 @@
2:I[77831,[],""]
3:I[87494,["902","static/chunks/902-292bb6a83427dbc7.js","131","static/chunks/131-4ee1d633e8928742.js","777","static/chunks/777-9d9df0b75010dbf9.js","418","static/chunks/app/model_hub/page-104cada6b5e5b14c.js"],""]
3:I[87494,["902","static/chunks/902-58bf23027703b2e8.js","131","static/chunks/131-4ee1d633e8928742.js","777","static/chunks/777-9d9df0b75010dbf9.js","418","static/chunks/app/model_hub/page-748a83a8e772a56b.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["Zz9ikKRv9WdfY0W6yeEPB",[[["",{"children":["model_hub",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["model_hub",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","model_hub","children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_86ef86","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/00256a1984d35914.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
0:["eIYu8vzcOp0w17kIm3LKw",[[["",{"children":["model_hub",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["model_hub",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","model_hub","children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/ea3759ed931c00b2.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

File diff suppressed because one or more lines are too long

View file

@ -1,7 +1,7 @@
2:I[77831,[],""]
3:I[667,["665","static/chunks/3014691f-b24e8254c7593934.js","902","static/chunks/902-292bb6a83427dbc7.js","684","static/chunks/684-16b194c83a169f6d.js","777","static/chunks/777-9d9df0b75010dbf9.js","461","static/chunks/app/onboarding/page-bad6cfbe58b9d19c.js"],""]
3:I[667,["665","static/chunks/3014691f-b24e8254c7593934.js","902","static/chunks/902-58bf23027703b2e8.js","684","static/chunks/684-16b194c83a169f6d.js","777","static/chunks/777-9d9df0b75010dbf9.js","461","static/chunks/app/onboarding/page-884a15d08f8be397.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["Zz9ikKRv9WdfY0W6yeEPB",[[["",{"children":["onboarding",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["onboarding",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","onboarding","children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_86ef86","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/00256a1984d35914.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
0:["eIYu8vzcOp0w17kIm3LKw",[[["",{"children":["onboarding",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["onboarding",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","onboarding","children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined","styles":null}]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/ea3759ed931c00b2.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

View file

@ -56,7 +56,7 @@ async def block_user(data: BlockUsers):
```
curl -X POST "http://0.0.0.0:8000/user/block"
-H "Authorization: Bearer sk-1234"
-D '{
-d '{
"user_ids": [<user_id>, ...]
}'
```
@ -106,7 +106,7 @@ async def unblock_user(data: BlockUsers):
```
curl -X POST "http://0.0.0.0:8000/user/unblock"
-H "Authorization: Bearer sk-1234"
-D '{
-d '{
"user_ids": [<user_id>, ...]
}'
```

View file

@ -703,7 +703,7 @@ async def team_member_delete(
-H 'Content-Type: application/json' \
-D '{
-d '{
"team_id": "45e3e396-ee08-4a61-a88e-16b3ce7e0849",
"user_id": "krrish247652@berri.ai"
}'

View file

@ -15,6 +15,7 @@ from litellm.llms.anthropic.chat.handler import (
)
from litellm.llms.anthropic.chat.transformation import AnthropicConfig
from litellm.proxy._types import PassThroughEndpointLoggingTypedDict
from litellm.proxy.pass_through_endpoints.types import PassthroughStandardLoggingPayload
if TYPE_CHECKING:
from ..success_handler import PassThroughEndpointLogging
@ -73,6 +74,20 @@ class AnthropicPassthroughLoggingHandler:
"kwargs": kwargs,
}
@staticmethod
def _get_user_from_metadata(
passthrough_logging_payload: PassthroughStandardLoggingPayload,
) -> Optional[str]:
request_body = passthrough_logging_payload.get("request_body")
if request_body:
end_user_id = request_body.get("litellm_metadata", {}).get("user", None)
if end_user_id:
return end_user_id
return request_body.get("metadata", {}).get(
"user_id", None
) # support anthropic param - https://docs.anthropic.com/en/api/messages
return None
@staticmethod
def _create_anthropic_response_logging_payload(
litellm_model_response: Union[
@ -89,34 +104,53 @@ class AnthropicPassthroughLoggingHandler:
handles streaming and non-streaming responses
"""
response_cost = litellm.completion_cost(
completion_response=litellm_model_response,
model=model,
)
kwargs["response_cost"] = response_cost
kwargs["model"] = model
try:
response_cost = litellm.completion_cost(
completion_response=litellm_model_response,
model=model,
)
kwargs["response_cost"] = response_cost
kwargs["model"] = model
passthrough_logging_payload: Optional[PassthroughStandardLoggingPayload] = ( # type: ignore
kwargs.get("passthrough_logging_payload")
)
if passthrough_logging_payload:
user = AnthropicPassthroughLoggingHandler._get_user_from_metadata(
passthrough_logging_payload=passthrough_logging_payload,
)
if user:
kwargs.setdefault("litellm_params", {})
kwargs["litellm_params"].update(
{"proxy_server_request": {"body": {"user": user}}}
)
# Make standard logging object for Anthropic
standard_logging_object = get_standard_logging_object_payload(
kwargs=kwargs,
init_response_obj=litellm_model_response,
start_time=start_time,
end_time=end_time,
logging_obj=logging_obj,
status="success",
)
# Make standard logging object for Anthropic
standard_logging_object = get_standard_logging_object_payload(
kwargs=kwargs,
init_response_obj=litellm_model_response,
start_time=start_time,
end_time=end_time,
logging_obj=logging_obj,
status="success",
)
# pretty print standard logging object
verbose_proxy_logger.debug(
"standard_logging_object= %s", json.dumps(standard_logging_object, indent=4)
)
kwargs["standard_logging_object"] = standard_logging_object
# pretty print standard logging object
verbose_proxy_logger.debug(
"standard_logging_object= %s",
json.dumps(standard_logging_object, indent=4),
)
kwargs["standard_logging_object"] = standard_logging_object
# set litellm_call_id to logging response object
litellm_model_response.id = logging_obj.litellm_call_id
litellm_model_response.model = model
logging_obj.model_call_details["model"] = model
return kwargs
# set litellm_call_id to logging response object
litellm_model_response.id = logging_obj.litellm_call_id
litellm_model_response.model = model
logging_obj.model_call_details["model"] = model
return kwargs
except Exception as e:
verbose_proxy_logger.exception(
"Error creating Anthropic response logging payload: %s", e
)
return kwargs
@staticmethod
def _handle_logging_anthropic_collected_chunks(

View file

@ -96,12 +96,11 @@ class PassThroughEndpointLogging:
)
thread_pool_executor.submit(
logging_obj.success_handler,
args=(
standard_logging_response_object,
start_time,
end_time,
cache_hit,
),
standard_logging_response_object, # Positional argument 1
start_time, # Positional argument 2
end_time, # Positional argument 3
cache_hit, # Positional argument 4
**kwargs, # Unpacked keyword arguments
)
await logging_obj.async_success_handler(

View file

@ -8063,7 +8063,7 @@ async def new_invitation(
```
curl -X POST 'http://localhost:4000/invitation/new' \
-H 'Content-Type: application/json' \
-D '{
-d '{
"user_id": "1234" // 👈 id of user in 'LiteLLM_UserTable'
}'
```
@ -8129,7 +8129,7 @@ async def invitation_info(
```
curl -X POST 'http://localhost:4000/invitation/new' \
-H 'Content-Type: application/json' \
-D '{
-d '{
"user_id": "1234" // 👈 id of user in 'LiteLLM_UserTable'
}'
```
@ -8182,7 +8182,7 @@ async def invitation_update(
```
curl -X POST 'http://localhost:4000/invitation/update' \
-H 'Content-Type: application/json' \
-D '{
-d '{
"invitation_id": "1234" // 👈 id of invitation in 'LiteLLM_InvitationTable'
"is_accepted": True // when invitation is accepted
}'
@ -8243,7 +8243,7 @@ async def invitation_delete(
```
curl -X POST 'http://localhost:4000/invitation/delete' \
-H 'Content-Type: application/json' \
-D '{
-d '{
"invitation_id": "1234" // 👈 id of invitation in 'LiteLLM_InvitationTable'
}'
```

View file

@ -58,7 +58,7 @@ def get_logging_payload(
usage = response_obj.get("usage", None) or {}
if isinstance(usage, litellm.Usage):
usage = dict(usage)
id = response_obj.get("id", kwargs.get("litellm_call_id"))
id = response_obj.get("id") or kwargs.get("litellm_call_id")
api_key = metadata.get("user_api_key", "")
if api_key is not None and isinstance(api_key, str):
if api_key.startswith("sk-"):

View file

@ -144,6 +144,7 @@ class CallTypes(Enum):
rerank = "rerank"
arerank = "arerank"
arealtime = "_arealtime"
pass_through = "pass_through_endpoint"
CallTypesLiteral = Literal[

View file

@ -4455,9 +4455,11 @@ def get_model_info( # noqa: PLR0915
return None
try:
azure_llms = litellm.azure_llms
azure_llms = {**litellm.azure_llms, **litellm.azure_embedding_models}
if model in azure_llms:
model = azure_llms[model]
if custom_llm_provider is not None and custom_llm_provider == "vertex_ai_beta":
custom_llm_provider = "vertex_ai"
if custom_llm_provider is not None and custom_llm_provider == "vertex_ai":
if "meta/" + model in litellm.vertex_llama3_models:
model = "meta/" + model
@ -6104,7 +6106,7 @@ def add_dummy_tool(custom_llm_provider: str) -> List[ChatCompletionToolParam]:
ChatCompletionToolParam(
type="function",
function=ChatCompletionToolParamFunctionChunk(
name="dummy-tool",
name="dummy_tool",
description="This is a dummy tool call", # provided to satisfy bedrock constraint.
parameters={
"type": "object",

View file

@ -4818,8 +4818,6 @@
"litellm_provider": "bedrock_converse",
"mode": "chat",
"supports_function_calling": true,
"supports_vision": true,
"supports_pdf_input": true,
"supports_prompt_caching": true
},
"amazon.nova-lite-v1:0": {
@ -6109,6 +6107,7 @@
"litellm_provider": "together_ai",
"supports_function_calling": true,
"supports_parallel_function_calling": true,
"supports_response_schema": true,
"mode": "chat"
},
"together_ai/meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": {
@ -6117,6 +6116,7 @@
"litellm_provider": "together_ai",
"supports_function_calling": true,
"supports_parallel_function_calling": true,
"supports_response_schema": true,
"mode": "chat"
},
"together_ai/meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo": {
@ -6133,12 +6133,14 @@
"litellm_provider": "together_ai",
"supports_function_calling": true,
"supports_parallel_function_calling": true,
"supports_response_schema": true,
"mode": "chat"
},
"together_ai/mistralai/Mistral-7B-Instruct-v0.1": {
"litellm_provider": "together_ai",
"supports_function_calling": true,
"supports_parallel_function_calling": true,
"supports_response_schema": true,
"mode": "chat"
},
"together_ai/togethercomputer/CodeLlama-34b-Instruct": {

View file

@ -389,3 +389,18 @@ class BaseLLMChatTest(ABC):
url = f"data:application/pdf;base64,{encoded_file}"
return url
def test_completion_cost(self):
from litellm import completion_cost
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
litellm.set_verbose = True
response = litellm.completion(
**self.get_base_completion_call_args(),
messages=[{"role": "user", "content": "Hello, how are you?"}],
)
cost = completion_cost(response)
assert cost > 0

View file

@ -2030,13 +2030,34 @@ def test_bedrock_prompt_caching_message(messages, expected_cache_control):
assert "cachePoint" not in json.dumps(transformed_messages)
@pytest.mark.parametrize(
"model, expected_supports_tool_call",
[
("bedrock/us.amazon.nova-pro-v1:0", True),
("bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0", True),
("bedrock/mistral.mistral-7b-instruct-v0.1:0", True),
("bedrock/meta.llama3-1-8b-instruct:0", True),
("bedrock/meta.llama3-2-70b-instruct:0", True),
("bedrock/amazon.titan-embed-text-v1:0", False),
],
)
def test_bedrock_supports_tool_call(model, expected_supports_tool_call):
supported_openai_params = (
litellm.AmazonConverseConfig().get_supported_openai_params(model=model)
)
if expected_supports_tool_call:
assert "tools" in supported_openai_params
else:
assert "tools" not in supported_openai_params
class TestBedrockConverseChat(BaseLLMChatTest):
def get_base_completion_call_args(self) -> dict:
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
litellm.add_known_models()
return {
"model": "bedrock/anthropic.claude-3-5-haiku-20241022-v1:0",
"model": "bedrock/us.anthropic.claude-3-5-sonnet-20241022-v2:0",
}
def test_tool_call_no_arguments(self, tool_call_no_arguments):
@ -2057,6 +2078,25 @@ class TestBedrockConverseChat(BaseLLMChatTest):
"""
pass
def test_completion_cost(self):
"""
Test if region models info is correctly used for cost calculation. Using the base model info for cost calculation.
"""
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
bedrock_model = "us.anthropic.claude-3-5-sonnet-20241022-v2:0"
litellm.model_cost.pop(bedrock_model, None)
model = f"bedrock/{bedrock_model}"
litellm.set_verbose = True
response = litellm.completion(
model=model,
messages=[{"role": "user", "content": "Hello, how are you?"}],
)
cost = completion_cost(response)
assert cost > 0
class TestBedrockRerank(BaseLLMRerankTest):
def get_custom_llm_provider(self) -> litellm.LlmProviders:

View file

@ -116,3 +116,34 @@ def test_get_model_info_gemini():
if model.startswith("gemini/") and not "gemma" in model:
assert info.get("tpm") is not None, f"{model} does not have tpm"
assert info.get("rpm") is not None, f"{model} does not have rpm"
def test_get_model_info_bedrock_region():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
args = {
"model": "us.anthropic.claude-3-5-sonnet-20241022-v2:0",
"custom_llm_provider": "bedrock",
}
litellm.model_cost.pop("us.anthropic.claude-3-5-sonnet-20241022-v2:0", None)
info = litellm.get_model_info(**args)
print("info", info)
assert info["key"] == "anthropic.claude-3-5-sonnet-20241022-v2:0"
assert info["litellm_provider"] == "bedrock"
@pytest.mark.parametrize(
"model",
[
"ft:gpt-3.5-turbo:my-org:custom_suffix:id",
"ft:gpt-4-0613:my-org:custom_suffix:id",
"ft:davinci-002:my-org:custom_suffix:id",
"ft:gpt-4-0613:my-org:custom_suffix:id",
"ft:babbage-002:my-org:custom_suffix:id",
"gpt-35-turbo",
"ada",
],
)
def test_get_model_info_completion_cost_unit_tests(model):
info = litellm.get_model_info(model)
print("info", info)

View file

@ -21,7 +21,7 @@ import asyncio
import datetime
import json
import logging
from typing import Optional
import pytest
import litellm
@ -29,7 +29,11 @@ from litellm.proxy.spend_tracking.spend_tracking_utils import get_logging_payloa
from litellm.proxy.utils import SpendLogsMetadata, SpendLogsPayload # noqa: E402
def test_spend_logs_payload():
@pytest.mark.parametrize(
"model_id",
["chatcmpl-9XZmkzS1uPhRCoVdGQvBqqIbSgECt", "", None],
)
def test_spend_logs_payload(model_id: Optional[str]):
"""
Ensure only expected values are logged in spend logs payload.
"""
@ -167,7 +171,7 @@ def test_spend_logs_payload():
"response_cost": 2.4999999999999998e-05,
},
"response_obj": litellm.ModelResponse(
id="chatcmpl-9XZmkzS1uPhRCoVdGQvBqqIbSgECt",
id=model_id,
choices=[
litellm.Choices(
finish_reason="length",
@ -192,6 +196,7 @@ def test_spend_logs_payload():
payload: SpendLogsPayload = get_logging_payload(**input_args)
assert len(payload["request_id"]) > 0
# Define the expected metadata keys
expected_metadata_keys = SpendLogsMetadata.__annotations__.keys()

View file

@ -730,3 +730,18 @@ def test_stream_chunk_builder_openai_audio_output_usage():
assert response_usage_value.model_dump(exclude_none=True) == v
else:
assert response_usage_value == v
def test_stream_chunk_builder_empty_initial_chunk():
from litellm.litellm_core_utils.streaming_chunk_builder_utils import (
ChunkProcessor,
)
chunks = [
{"id": ""},
{"id": "1"},
{"id": "1"},
]
id = ChunkProcessor._get_chunk_id(chunks)
assert id == "1"

View file

@ -343,7 +343,7 @@ def test_assemble_complete_response_from_streaming_chunks_4(is_async):
chunk = litellm.ModelResponse(**chunk, stream=True)
# remove attribute id from chunk
del chunk.id
del chunk.object
complete_streaming_response = _assemble_complete_response_from_streaming_chunks(
result=chunk,

View file

@ -17,7 +17,7 @@ import asyncio
import logging
from opentelemetry.sdk.trace.export.in_memory_span_exporter import InMemorySpanExporter
from litellm._logging import verbose_logger
from litellm.proxy._types import SpanAttributes
verbose_logger.setLevel(logging.DEBUG)
@ -257,6 +257,7 @@ def validate_redacted_message_span_attributes(span):
"gen_ai.request.model",
"gen_ai.system",
"llm.is_streaming",
"llm.request.type",
"gen_ai.response.id",
"gen_ai.response.model",
"llm.usage.total_tokens",
@ -273,9 +274,17 @@ def validate_redacted_message_span_attributes(span):
"metadata.user_api_key_org_id",
]
_all_attributes = set([name for name in span.attributes.keys()])
_all_attributes = set(
[
name.value if isinstance(name, SpanAttributes) else name
for name in span.attributes.keys()
]
)
print("all_attributes", _all_attributes)
for attr in _all_attributes:
print(f"attr: {attr}, type: {type(attr)}")
assert _all_attributes == set(expected_attributes)
pass

View file

@ -87,7 +87,11 @@ async def test_anthropic_passthrough_handler(
assert isinstance(result["result"], litellm.ModelResponse)
def test_create_anthropic_response_logging_payload(mock_logging_obj):
@pytest.mark.parametrize(
"metadata_params",
[{"metadata": {"user_id": "test"}}, {"litellm_metadata": {"user": "test"}}, {}],
)
def test_create_anthropic_response_logging_payload(mock_logging_obj, metadata_params):
# Test the logging payload creation
model_response = litellm.ModelResponse()
model_response.choices = [{"message": {"content": "Test response"}}]
@ -95,18 +99,109 @@ def test_create_anthropic_response_logging_payload(mock_logging_obj):
start_time = datetime.now()
end_time = datetime.now()
result = (
AnthropicPassthroughLoggingHandler._create_anthropic_response_logging_payload(
litellm_model_response=model_response,
model="claude-3-opus-20240229",
kwargs={},
start_time=start_time,
end_time=end_time,
logging_obj=mock_logging_obj,
)
result = AnthropicPassthroughLoggingHandler._create_anthropic_response_logging_payload(
litellm_model_response=model_response,
model="claude-3-opus-20240229",
kwargs={
"litellm_params": {
"metadata": {
"user_api_key": "88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",
"user_api_key_user_id": "default_user_id",
"user_api_key_team_id": None,
"user_api_key_end_user_id": "default_user_id",
},
"api_base": "https://api.anthropic.com/v1/messages",
},
"call_type": "pass_through_endpoint",
"litellm_call_id": "5cf924cb-161c-4c1d-a565-31aa71ab50ab",
"passthrough_logging_payload": {
"url": "https://api.anthropic.com/v1/messages",
"request_body": {
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Open a new Firefox window, navigate to google.com.",
}
],
},
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "I'll help you open Firefox and navigate to Google. First, let me check the desktop with a screenshot to locate the Firefox icon.",
},
{
"type": "tool_use",
"id": "toolu_01Tour7YxyXkwhuSP25dQEP7",
"name": "computer",
"input": {"action": "screenshot"},
},
],
},
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_01Tour7YxyXkwhuSP25dQEP7",
"content": "",
}
],
},
],
"tools": [
{
"type": "computer_20241022",
"name": "computer",
"display_width_px": 1280,
"display_height_px": 800,
},
{"type": "text_editor_20241022", "name": "str_replace_editor"},
{"type": "bash_20241022", "name": "bash"},
],
"max_tokens": 4096,
"model": "claude-3-5-sonnet-20241022",
**metadata_params,
},
"response_body": {
"id": "msg_015uSaCZBvu9gUSkAmZtMfxC",
"type": "message",
"role": "assistant",
"model": "claude-3-5-sonnet-20241022",
"content": [
{
"type": "text",
"text": "Now I'll click on the Firefox icon to launch it.",
},
{
"type": "tool_use",
"id": "toolu_01TQsF5p7Pf4LGKyLUDDySVr",
"name": "computer",
"input": {"action": "mouse_move", "coordinate": [24, 36]},
},
],
"stop_reason": "tool_use",
"stop_sequence": None,
"usage": {"input_tokens": 2202, "output_tokens": 89},
},
},
"response_cost": 0.007941,
"model": "claude-3-5-sonnet-20241022",
},
start_time=start_time,
end_time=end_time,
logging_obj=mock_logging_obj,
)
assert isinstance(result, dict)
assert "model" in result
assert "response_cost" in result
assert "standard_logging_object" in result
if metadata_params:
assert "test" == result["standard_logging_object"]["end_user"]
else:
assert "" == result["standard_logging_object"]["end_user"]

File diff suppressed because one or more lines are too long

View file

@ -1 +0,0 @@
self.__BUILD_MANIFEST={__rewrites:{afterFiles:[],beforeFiles:[],fallback:[]},"/_error":["static/chunks/pages/_error-d6107f1aac0c574c.js"],sortedPages:["/_app","/_error"]},self.__BUILD_MANIFEST_CB&&self.__BUILD_MANIFEST_CB();

View file

@ -1 +0,0 @@
self.__SSG_MANIFEST=new Set([]);self.__SSG_MANIFEST_CB&&self.__SSG_MANIFEST_CB()

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +0,0 @@
"use strict";(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[665],{30953:function(e,t,r){r.d(t,{GH$:function(){return n}});var l=r(2265);let n=e=>{let{color:t="currentColor",size:r=24,className:n,...s}=e;return l.createElement("svg",{viewBox:"0 0 24 24",xmlns:"http://www.w3.org/2000/svg",width:r,height:r,fill:t,...s,className:"remixicon "+(n||"")},l.createElement("path",{d:"M12 22C6.47715 22 2 17.5228 2 12C2 6.47715 6.47715 2 12 2C17.5228 2 22 6.47715 22 12C22 17.5228 17.5228 22 12 22ZM12 20C16.4183 20 20 16.4183 20 12C20 7.58172 16.4183 4 12 4C7.58172 4 4 7.58172 4 12C4 16.4183 7.58172 20 12 20ZM11.0026 16L6.75999 11.7574L8.17421 10.3431L11.0026 13.1716L16.6595 7.51472L18.0737 8.92893L11.0026 16Z"}))}}}]);

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +0,0 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[165],{83155:function(e,t,n){(window.__NEXT_P=window.__NEXT_P||[]).push(["/_not-found",function(){return n(84032)}])},84032:function(e,t,n){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"default",{enumerable:!0,get:function(){return i}}),n(86921);let o=n(57437);n(2265);let r={error:{fontFamily:'system-ui,"Segoe UI",Roboto,Helvetica,Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji"',height:"100vh",textAlign:"center",display:"flex",flexDirection:"column",alignItems:"center",justifyContent:"center"},desc:{display:"inline-block"},h1:{display:"inline-block",margin:"0 20px 0 0",padding:"0 23px 0 0",fontSize:24,fontWeight:500,verticalAlign:"top",lineHeight:"49px"},h2:{fontSize:14,fontWeight:400,lineHeight:"49px",margin:0}};function i(){return(0,o.jsxs)(o.Fragment,{children:[(0,o.jsx)("title",{children:"404: This page could not be found."}),(0,o.jsx)("div",{style:r.error,children:(0,o.jsxs)("div",{children:[(0,o.jsx)("style",{dangerouslySetInnerHTML:{__html:"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}),(0,o.jsx)("h1",{className:"next-error-h1",style:r.h1,children:"404"}),(0,o.jsx)("div",{style:r.desc,children:(0,o.jsx)("h2",{style:r.h2,children:"This page could not be found."})})]})})]})}("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)}},function(e){e.O(0,[971,69,744],function(){return e(e.s=83155)}),_N_E=e.O()}]);

View file

@ -1 +0,0 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{87421:function(e,n,t){Promise.resolve().then(t.t.bind(t,99646,23)),Promise.resolve().then(t.t.bind(t,63385,23))},63385:function(){},99646:function(e){e.exports={style:{fontFamily:"'__Inter_86ef86', '__Inter_Fallback_86ef86'",fontStyle:"normal"},className:"__className_86ef86"}}},function(e){e.O(0,[971,69,744],function(){return e(e.s=87421)}),_N_E=e.O()}]);

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +0,0 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{32028:function(e,n,t){Promise.resolve().then(t.t.bind(t,47690,23)),Promise.resolve().then(t.t.bind(t,48955,23)),Promise.resolve().then(t.t.bind(t,5613,23)),Promise.resolve().then(t.t.bind(t,11902,23)),Promise.resolve().then(t.t.bind(t,31778,23)),Promise.resolve().then(t.t.bind(t,77831,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,69],function(){return n(35317),n(32028)}),_N_E=e.O()}]);

View file

@ -1 +0,0 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[888],{41597:function(n,_,u){(window.__NEXT_P=window.__NEXT_P||[]).push(["/_app",function(){return u(57174)}])}},function(n){var _=function(_){return n(n.s=_)};n.O(0,[774,179],function(){return _(41597),_(94546)}),_N_E=n.O()}]);

View file

@ -1 +0,0 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[820],{81981:function(n,_,u){(window.__NEXT_P=window.__NEXT_P||[]).push(["/_error",function(){return u(5103)}])}},function(n){n.O(0,[888,774,179],function(){return n(n.s=81981)}),_N_E=n.O()}]);

File diff suppressed because one or more lines are too long

View file

@ -1 +0,0 @@
!function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/00256a1984d35914.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}();

File diff suppressed because one or more lines are too long

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

Some files were not shown because too many files have changed in this diff Show more