Compare commits

...

289 commits

Author SHA1 Message Date
Christian Owusu
b82af5b826
Fix UI Flicker in Dashboard (#10261)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 17s
Helm unit test / unit-test (push) Successful in 24s
2025-04-23 23:27:44 -07:00
Krrish Dholakia
2adb2fc6a5 test: handle service unavailable error 2025-04-23 22:10:46 -07:00
Krrish Dholakia
620a0f4805 bump: version 1.67.2 → 1.67.3 2025-04-23 22:09:25 -07:00
Krrish Dholakia
05d617bea0 build(ui/): new ui build 2025-04-23 22:09:14 -07:00
Krish Dholakia
ab68af4ff5
Litellm multi admin fixes (#10259)
* fix(create_user_button.tsx): do not set 'no-default-models' when user is a proxy admin

* fix(user_info_view.tsx): show all user personal models

* feat(user_info_view.tsx): allow giving users more personal models

* feat(user_edit_view.tsx): allow proxy admin to edit user role, available models, etc.
2025-04-23 22:02:02 -07:00
Krish Dholakia
430cc60e62
Litellm fix UI login (#10260)
* fix(user_dashboard.tsx): add token expiry logic to user dashboard

if token expired redirect to `/sso/key/generate` for login

* fix(user_dashboard.tsx): check key health on login - if invalid -> redirect to login

handles invalid / expired key scenario

* fix(user_dashboard.tsx): fix linting error

* fix(page.tsx): fix invitation link flow
2025-04-23 22:01:38 -07:00
Krish Dholakia
be4152c8d5
UI - fix edit azure public model name + fix editing model name post create
* test(test_router.py): add unit test confirming fallbacks with tag based routing works as expected

* test: update testing

* test: update test to not use gemini-pro

google removed it

* fix(conditional_public_model_name.tsx): edit azure public model name

Fixes https://github.com/BerriAI/litellm/issues/10093

* fix(model_info_view.tsx): migrate to patch model updates

Enables changing model name easily
2025-04-23 21:56:56 -07:00
Krish Dholakia
acd2c1783c
fix(converse_transformation.py): support all bedrock - openai params for arn models (#10256)
Fixes https://github.com/BerriAI/litellm/issues/10207
2025-04-23 21:56:05 -07:00
Krrish Dholakia
6023427dae docs(gemini.md): cleanup 2025-04-23 21:54:12 -07:00
Krrish Dholakia
2486a106f4 test: mark flaky tests 2025-04-23 21:50:25 -07:00
Christian Owusu
a260afb74d
Reset key alias value when resetting filters (#10099) 2025-04-23 21:04:40 -07:00
Dimitri Papadopoulos Orfanos
5e2fd49dd3
Fix typos (#10232) 2025-04-23 20:59:25 -07:00
Ishaan Jaff
f3291bde4d
fix for serviceAccountName on migration job (#10258) 2025-04-23 20:56:31 -07:00
Krrish Dholakia
1014529ed6 build(ui/): update ui build
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 21s
Helm unit test / unit-test (push) Successful in 23s
2025-04-23 16:55:35 -07:00
Krish Dholakia
edd15b0905
fix(user_dashboard.tsx): add token expiry logic to user dashboard (#10250)
* fix(user_dashboard.tsx): add token expiry logic to user dashboard

if token expired redirect to `/sso/key/generate` for login

* fix(user_dashboard.tsx): check key health on login - if invalid -> redirect to login

handles invalid / expired key scenario

* fix(user_dashboard.tsx): fix linting error

* fix(page.tsx): fix invitation link flow
2025-04-23 16:51:27 -07:00
Ishaan Jaff
dc9b058dbd
[Feat] Add support for GET Responses Endpoint - OpenAI, Azure OpenAI (#10235)
* Added get responses API (#10234)

* test_basic_openai_responses_get_endpoint

* transform_get_response_api_request

* test_basic_openai_responses_get_endpoint

---------

Co-authored-by: Prathamesh Saraf <pratamesh1867@gmail.com>
2025-04-23 15:19:29 -07:00
Ishaan Jaff
2e58e47b43
[Bug Fix] Add Cost Tracking for gpt-image-1 when quality is unspecified (#10247)
* TestOpenAIGPTImage1

* fixes for cost calc

* fix ImageGenerationRequestQuality.MEDIUM
2025-04-23 15:16:40 -07:00
Ishaan Jaff
baa5564f95 cleanup remove stale dir 2025-04-23 14:07:43 -07:00
Ishaan Jaff
36ee132514
[Feat] Add gpt-image-1 cost tracking (#10241)
* add gpt-image-1

* add gpt-image-1 example to docs
2025-04-23 12:20:55 -07:00
Krrish Dholakia
a649f10e63 test: update test to not use gemini-pro
google removed it
2025-04-23 11:31:09 -07:00
Krrish Dholakia
8184124217 test: update testing 2025-04-23 11:21:50 -07:00
Krrish Dholakia
174a1aa007 test: update test
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 16s
Helm unit test / unit-test (push) Successful in 25s
2025-04-23 10:51:18 -07:00
Christian Owusu
47420d8d68
Require auth for all dashboard pages (#10229)
* Require authentication for all Dashboard pages

* Add test

* Add test
2025-04-23 07:08:25 -07:00
Dimitri Papadopoulos Orfanos
34be7ffceb
Discard duplicate sentence (#10231) 2025-04-23 07:05:29 -07:00
Krrish Dholakia
f5996b2f6b test: update test to skip 'gemini-pro' - model deprecated
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 19s
Helm unit test / unit-test (push) Successful in 32s
2025-04-23 00:01:02 -07:00
Krish Dholakia
217681eb5e
Litellm dev 04 22 2025 p1 (#10206)
* fix(openai.py): initial commit adding generic event type for openai responses api streaming

Ensures handling for undocumented event types - e.g. "response.reasoning_summary_part.added"

* fix(transformation.py): handle unknown openai response type

* fix(datadog_llm_observability.py): handle dict[str, any] -> dict[str, str] conversion

Fixes https://github.com/BerriAI/litellm/issues/9494

* test: add more unit testing

* test: add unit test

* fix(common_utils.py): fix message with content list

* test: update testing
2025-04-22 23:58:43 -07:00
Krish Dholakia
f670ebeb2f
Users page - new user info pane (#10213)
* feat(user_info_view.tsx): be able to click in and see all teams user is part of

makes it easy to see which teams a user belongs to

* test(ui/): add unit testing for user info view

* fix(user_info_view.tsx): fix linting errors

* fix(login.ts): fix login

* fix: fix linting error
2025-04-22 21:55:47 -07:00
Krrish Dholakia
31f704a370 fix(internal_user_endpoints.py): add check on sortby value 2025-04-22 21:41:13 -07:00
Ishaan Jaff
1e3a1cba23 bump: version 1.67.1 → 1.67.2 2025-04-22 21:35:23 -07:00
Ishaan Jaff
96e31d205c
feat: Added Missing Attributes For Arize & Phoenix Integration (#10043) (#10215)
* feat: Added Missing Attributes For Arize & Phoenix Integration

* chore: Added noqa for PLR0915 to suppress warning

* chore: Moved Contributor Test to Correct Location

* chore: Removed Redundant Fallback

Co-authored-by: Ali Saleh <saleh.a@turing.com>
2025-04-22 21:34:51 -07:00
Krish Dholakia
5f98d4d7de
UI - Users page - Enable global sorting (allows finding users with highest spend) (#10211)
* fix(view_users.tsx): add time tracking logic to debounce search - prevent new queries from being overwritten by previous ones

* fix(internal_user_endpoints.py): add sort functionality to user list endpoint

* feat(internal_user_endpoints.py): support sort by on `/user/list`

* fix(view_users.tsx): enable global sorting

allows finding user with highest spend

* feat(view_users.tsx): support filtering by sso user id

* test(search_users.spec.ts): add tests to ensure filtering works

* test: add more unit testing
2025-04-22 19:59:53 -07:00
Ishaan Jaff
0dba2886f0 fix test 2025-04-22 18:37:56 -07:00
Ishaan Jaff
6e4fed59b6 docs agent ops logging
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 20s
Helm unit test / unit-test (push) Successful in 28s
2025-04-22 18:32:28 -07:00
Ishaan Jaff
b96d2ea422
Bug Fix - Address deprecation of open_text (#10208)
* Update utils.py (#10201)

* fixes importlib

---------

Co-authored-by: Nathan Brake <33383515+njbrake@users.noreply.github.com>
2025-04-22 18:29:56 -07:00
Ishaan Jaff
868cdd0226
[Feat] Add Support for DELETE /v1/responses/{response_id} on OpenAI, Azure OpenAI (#10205)
* add transform_delete_response_api_request to base responses config

* add transform_delete_response_api_request

* add delete_response_api_handler

* fixes for deleting responses, response API

* add adelete_responses

* add async test_basic_openai_responses_delete_endpoint

* test_basic_openai_responses_delete_endpoint

* working delete for streaming on responses API

* fixes azure transformation

* TestAnthropicResponsesAPITest

* fix code check

* fix linting

* fixes for get_complete_url

* test_basic_openai_responses_streaming_delete_endpoint

* streaming fixes
2025-04-22 18:27:03 -07:00
Ishaan Jaff
2bb51866b1 fix azure/computer-use-preview native streaming 2025-04-22 18:21:06 -07:00
Ishaan Jaff
44264ab6d6 fix failing agent ops test 2025-04-22 14:39:50 -07:00
Krish Dholakia
66680c421d
Add global filtering to Users tab (#10195)
* style(internal_user_endpoints.py): add response model to `/user/list` endpoint

make sure we maintain consistent response spec

* fix(key_management_endpoints.py): return 'created_at' and 'updated_at' on `/key/generate`

Show 'created_at' on UI when key created

* test(test_keys.py): add e2e test to ensure created at is always returned

* fix(view_users.tsx): support global search by user email

allows easier search

* test(search_users.spec.ts): add e2e test ensure user search works on admin ui

* fix(view_users.tsx): support filtering user by role and user id

More powerful filtering on internal users table

* fix(view_users.tsx): allow filtering users by team

* style(view_users.tsx): cleanup ui to show filters in consistent style

* refactor(view_users.tsx): cleanup to just use 1 variable for the data

* fix(view_users.tsx): cleanup use effect hooks

* fix(internal_user_endpoints.py): fix check to pass testing

* test: update tests

* test: update tests

* Revert "test: update tests"

This reverts commit 6553eeb232.

* fix(view_userts.tsx): add back in 'previous' and 'next' tabs for pagination
2025-04-22 13:59:43 -07:00
Dwij
b2955a2bdd
Add AgentOps Integration to LiteLLM (#9685)
* feat(sidebars): add new item for agentops integration in Logging & Observability category

* Update agentops_integration.md to enhance title formatting and remove redundant section

* Enhance AgentOps integration in documentation and codebase by removing LiteLLMCallbackHandler references, adding environment variable configurations, and updating logging initialization for AgentOps support.

* Update AgentOps integration documentation to include instructions for obtaining API keys and clarify environment variable setup.

* Add unit tests for AgentOps integration and improve error handling in token fetching

* Add unit tests for AgentOps configuration and token fetching functionality

* Corrected agentops test directory

* Linting fix

* chore: add OpenTelemetry dependencies to pyproject.toml

* chore: update OpenTelemetry dependencies and add new packages in pyproject.toml and poetry.lock
2025-04-22 10:29:01 -07:00
Ishaan Jaff
ebfff975d4 docs responses routing
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 19s
Helm unit test / unit-test (push) Successful in 52s
2025-04-21 23:05:53 -07:00
Krish Dholakia
a7db0df043
Gemini-2.5-flash improvements (#10198)
* fix(vertex_and_google_ai_studio_gemini.py): allow thinking budget = 0

Fixes https://github.com/BerriAI/litellm/issues/10121

* fix(vertex_and_google_ai_studio_gemini.py): handle nuance in counting exclusive vs. inclusive tokens

Addresses https://github.com/BerriAI/litellm/pull/10141#discussion_r2052272035
2025-04-21 22:48:00 -07:00
Ishaan Jaff
d1fb051d25 bump: version 1.67.0 → 1.67.1 2025-04-21 22:43:13 -07:00
Ishaan Jaff
7cb95bcc96
[Bug Fix] caching does not account for thinking or reasoning_effort config (#10140)
* _get_litellm_supported_chat_completion_kwargs

* test caching with thinking
2025-04-21 22:39:40 -07:00
Ishaan Jaff
104e4cb1bc
[Feat] Add infinity embedding support (contributor pr) (#10196)
* Feature - infinity support for #8764 (#10009)

* Added support for infinity embeddings

* Added test cases

* Fixed tests and api base

* Updated docs and tests

* Removed unused import

* Updated signature

* Added support for infinity embeddings

* Added test cases

* Fixed tests and api base

* Updated docs and tests

* Removed unused import

* Updated signature

* Updated validate params

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>

* fix InfinityEmbeddingConfig

---------

Co-authored-by: Prathamesh Saraf <pratamesh1867@gmail.com>
2025-04-21 20:01:29 -07:00
Ishaan Jaff
0c2f705417
[Feat] Add Responses API - Routing Affinity logic for sessions (#10193)
* test for test_responses_api_routing_with_previous_response_id

* test_responses_api_routing_with_previous_response_id

* add ResponsesApiDeploymentCheck

* ResponsesApiDeploymentCheck

* ResponsesApiDeploymentCheck

* fix ResponsesApiDeploymentCheck

* test_responses_api_routing_with_previous_response_id

* ResponsesApiDeploymentCheck

* test_responses_api_deployment_check.py

* docs routing affinity

* simplify ResponsesApiDeploymentCheck

* test response id

* fix code quality check
2025-04-21 20:00:27 -07:00
Ishaan Jaff
4eac0f64f3
[Feat] Pass through endpoints - ensure PassthroughStandardLoggingPayload is logged and contains method, url, request/response body (#10194)
* ensure passthrough_logging_payload is filled in kwargs

* test_assistants_passthrough_logging

* test_assistants_passthrough_logging

* test_assistants_passthrough_logging

* test_threads_passthrough_logging

* test _init_kwargs_for_pass_through_endpoint

* _init_kwargs_for_pass_through_endpoint
2025-04-21 19:46:22 -07:00
Krrish Dholakia
4a50cf10fb build: update ui build
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 23s
Helm unit test / unit-test (push) Successful in 25s
2025-04-21 16:26:36 -07:00
Krish Dholakia
89131d8ed3
Remove user_id from url (#10192)
* fix(user_dashboard.tsx): initial commit using user id from jwt instead of url

* fix(proxy_server.py): remove user id from url

fixes security issue around sharing url's

* fix(user_dashboard.tsx): handle user id being null
2025-04-21 16:22:57 -07:00
Krrish Dholakia
a34778dda6 build(ui/): update ui build
supports new non-user id in url flow
2025-04-21 16:22:28 -07:00
Krish Dholakia
0c3b7bb37d
fix(router.py): handle edge case where user sets 'model_group' inside… (#10191)
* fix(router.py): handle edge case where user sets 'model_group' inside 'model_info'

* fix(key_management_endpoints.py): security fix - return hashed token in 'token' field

Ensures when creating a key on UI - only hashed token shown

* test(test_key_management_endpoints.py): add unit test

* test: update test
2025-04-21 16:17:45 -07:00
Nilanjan De
03245c732a
Fix: Potential SQLi in spend_management_endpoints.py (#9878)
* fix: Potential SQLi in spend_management_endpoints.py

* fix tests

* test: add tests for global spend keys endpoint

* chore: update error message

* chore: lint

* chore: rename test
2025-04-21 14:29:38 -07:00
Li Yang
10257426a2
fix(bedrock): wrong system prompt transformation (#10120)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 16s
Helm unit test / unit-test (push) Successful in 25s
* fix(bedrock): wrong system transformation

* chore: add one more test case

---------

Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>
2025-04-21 08:48:14 -07:00
Marty Sullivan
0b63c7a2eb
Model pricing updates for Azure & VertexAI (#10178)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 23s
Helm unit test / unit-test (push) Successful in 27s
2025-04-20 11:33:45 -07:00
Krrish Dholakia
1ff7625984 docs: cleanup 2025-04-20 09:26:05 -07:00
Krrish Dholakia
aa55103486 docs: cleanup doc
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 19s
Helm unit test / unit-test (push) Successful in 26s
2025-04-20 09:20:47 -07:00
Krrish Dholakia
1d9b58688b docs(sidebars.js): place scim doc in correct place 2025-04-20 09:20:10 -07:00
Krish Dholakia
ce828408da
fix(proxy_server.py): pass llm router to get complete model list (#10176)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 21s
Helm unit test / unit-test (push) Successful in 27s
allows model auth to work
2025-04-19 22:27:49 -07:00
Krish Dholakia
e0a613f88a
fix(common_daily_activity.py): support empty entity id field (#10175)
* fix(common_daily_activity.py): support empty entity id field

allows returning empty response when user is not admin and does not belong to any team

* test(test_common_daily_activity.py): add unit testing
2025-04-19 22:20:28 -07:00
Ishaan Jaff
72f6bd3972 fix azure foundry phi error 2025-04-19 22:10:18 -07:00
Ishaan Jaff
36bcb3de4e fix models appearing under test key page 2025-04-19 21:37:08 -07:00
Krrish Dholakia
bb13ac45c8 docs(index.md): cleanup 2025-04-19 19:16:10 -07:00
Ishaan Jaff
1be36be72e
Litellm docs SCIM (#10174)
* docs scim

* docs SCIM stash

* docs litellm SCIM

* docs fix

* docs scim with LiteLLM
2025-04-19 18:29:09 -07:00
Krish Dholakia
55a17730fb
fix(transformation.py): pass back in gemini thinking content to api (#10173)
Ensures thinking content always returned
2025-04-19 18:03:05 -07:00
Krish Dholakia
bbfcb1ac7e
Litellm release notes 04 19 2025 (#10169)
* docs(index.md): initial draft release notes

* docs: note all pending docs

* build(model_prices_and_context_window.json): add o3, gpt-4.1, o4-mini pricing

* docs(vllm.md): update vllm doc to show file message type support

* docs(mistral.md): add mistral passthrough route doc

* docs(gemini.md): add gemini thinking to docs

* docs(vertex.md): add thinking/reasoning content for gemini models to docs

* docs(index.md): more links

* docs(index.md): add more links, images

* docs(index.md): cleanup highlights
2025-04-19 17:26:30 -07:00
Ishaan Jaff
daf024bad1 Supported Responses API Parameters 2025-04-19 17:14:53 -07:00
Ishaan Jaff
f39d917886
[Docs] Responses API (#10172)
* docs litellm responses api

* doc fix

* docs responses API

* add get_supported_openai_params for LiteLLMCompletionResponsesConfig

* add Supported Responses API Parameters
2025-04-19 17:10:45 -07:00
Ishaan Jaff
7c3df984da
can_user_call_model (#10170)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 51s
Helm unit test / unit-test (push) Successful in 51s
2025-04-19 16:46:00 -07:00
Ishaan Jaff
431b230f07
[UI] Bug Fix, team model selector (#10171)
* fix tooltip

* bug fix fix team model selector
2025-04-19 16:31:38 -07:00
Ishaan Jaff
6206649219 bump: version 1.66.3 → 1.67.0 2025-04-19 14:41:16 -07:00
Ishaan Jaff
653570824a
Bug Fix - Responses API, Loosen restrictions on allowed environments for computer use tool (#10168)
* loosen allowed types on ComputerToolParam

* test_basic_computer_use_preview_tool_call
2025-04-19 14:40:32 -07:00
Ishaan Jaff
c80e984d7e ui new build 2025-04-19 14:19:33 -07:00
Ishaan Jaff
b0024bb229
[Bug Fix] Spend Tracking Bug Fix, don't modify in memory default litellm params (#10167)
* _update_kwargs_with_default_litellm_params

* test_update_kwargs_does_not_mutate_defaults_and_merges_metadata
2025-04-19 14:13:59 -07:00
Ishaan Jaff
0717369ae6
[Feat] Expose Responses API on LiteLLM UI Test Key Page (#10166)
* add /responses API on UI

* add makeOpenAIResponsesRequest

* add makeOpenAIResponsesRequest

* fix add responses API on UI

* fix endpoint selector

* responses API render chunks on litellm chat ui

* fixes to streaming iterator

* fix render responses completed events

* fixes for MockResponsesAPIStreamingIterator

* transform_responses_api_request_to_chat_completion_request

* fix for responses API

* test_basic_openai_responses_api_streaming

* fix base responses api tests
2025-04-19 13:18:54 -07:00
Krish Dholakia
03b5399f86
test(utils.py): handle scenario where text tokens + reasoning tokens … (#10165)
* test(utils.py): handle scenario where text tokens + reasoning tokens set, but reasoning tokens not charged separately

Addresses https://github.com/BerriAI/litellm/pull/10141#discussion_r2051555332

* fix(vertex_and_google_ai_studio.py): only set content if non-empty str
2025-04-19 12:32:38 -07:00
Ong Khai Wei
99db1b7690
to get API key from environment viarble of WATSONX_APIKEY (#10131) 2025-04-19 11:25:14 -07:00
Classic298
173ef01ef6
Update model_prices_and_context_window_backup.json (#10122)
* Update model_prices_and_context_window_backup.json

* Update model_prices_and_context_window_backup.json
2025-04-19 11:24:52 -07:00
Krish Dholakia
5c929317cd
fix(triton/completion/transformation.py): remove bad_words / stop wor… (#10163)
* fix(triton/completion/transformation.py): remove bad_words / stop words from triton call

parameter 'bad_words' has invalid type. It should be either 'int', 'bool', or 'string'.

* fix(proxy_track_cost_callback.py): add debug logging for track cost callback error
2025-04-19 11:23:37 -07:00
Krish Dholakia
f08a4e3c06
Support 'file' message type for VLLM video url's + Anthropic redacted message thinking support (#10129)
* feat(hosted_vllm/chat/transformation.py): support calling vllm video url with openai 'file' message type

allows switching between gemini/vllm easily

* [WIP] redacted thinking tests (#9044)

* WIP: redacted thinking tests

* test: add test for redacted thinking in assistant message

---------

Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>

* fix(anthropic/chat/transformation.py): support redacted thinking block on anthropic completion

Fixes https://github.com/BerriAI/litellm/issues/9058

* fix(anthropic/chat/handler.py): transform anthropic redacted messages on streaming

Fixes https://github.com/BerriAI/litellm/issues/9058

* fix(bedrock/): support redacted text on streaming + non-streaming

Fixes https://github.com/BerriAI/litellm/issues/9058

* feat(litellm_proxy/chat/transformation.py): support 'reasoning_effort' param for proxy

allows using reasoning effort with thinking models on proxy

* test: update tests

* fix(utils.py): fix linting error

* fix: fix linting errors

* fix: fix linting errors

* fix: fix linting error

* fix: fix linting errors

* fix(anthropic/chat/transformation.py): fix returning citations in chat completion

---------

Co-authored-by: Johann Miller <22018973+johannkm@users.noreply.github.com>
2025-04-19 11:16:37 -07:00
Ishaan Jaff
3c463f6715 test fix - output_cost_per_reasoning_token was added to model cost map 2025-04-19 10:02:25 -07:00
Krish Dholakia
2508ca71cb
Handle fireworks ai tool calling response (#10130)
* feat(fireworks_ai/chat): handle tool calling with fireworks ai correctly

Fixes https://github.com/BerriAI/litellm/issues/7209

* fix(utils.py): handle none type in message

* fix: fix model name in test

* fix(utils.py): fix validate check for openai messages

* fix: fix model returned

* fix(main.py): fix text completion routing

* test: update testing

* test: skip test - cohere having RBAC issues
2025-04-19 09:37:45 -07:00
Krrish Dholakia
b4f2b3dad1 test: update test to be more robust to usage updates 2025-04-19 09:26:26 -07:00
Ishaan Jaff
8ae2653280 fix calculated cache key for tests 2025-04-19 09:25:11 -07:00
Ishaan Jaff
97d7a5e78e fix deployment name 2025-04-19 09:23:22 -07:00
Krish Dholakia
36308a31be
Gemini-2.5-flash - support reasoning cost calc + return reasoning content (#10141)
* build(model_prices_and_context_window.json): add vertex ai gemini-2.5-flash pricing

* build(model_prices_and_context_window.json): add gemini reasoning token pricing

* fix(vertex_and_google_ai_studio_gemini.py): support counting thinking tokens for gemini

allows accurate cost calc

* fix(utils.py): add reasoning token cost calc to generic cost calc

ensures gemini-2.5-flash cost calculation is accurate

* build(model_prices_and_context_window.json): mark gemini-2.5-flash as 'supports_reasoning'

* feat(gemini/): support 'thinking' + 'reasoning_effort' params + new unit tests

allow controlling thinking effort for gemini-2.5-flash models

* test: update unit testing

* feat(vertex_and_google_ai_studio_gemini.py): return reasoning content if given in gemini response

* test: update model name

* fix: fix ruff check

* test(test_spend_management_endpoints.py): update tests to be less sensitive to new keys / updates to usage object

* fix(vertex_and_google_ai_studio_gemini.py): fix translation
2025-04-19 09:20:52 -07:00
Ishaan Jaff
db4ebe10c8 bump litellm-proxy-extras 2025-04-19 09:14:33 -07:00
Krrish Dholakia
d726e0f34c test: update testing imports 2025-04-19 09:13:16 -07:00
Krrish Dholakia
ba1b552e8b fix(common_daily_activity.py): fix python 3_8 error 2025-04-19 08:39:19 -07:00
Ishaan Jaff
49759d5678 fix get_azure_client 2025-04-19 08:33:26 -07:00
Ishaan Jaff
0a35c208d7 test assistants fixes 2025-04-19 08:09:45 -07:00
Krrish Dholakia
dee5182fc8 fix: fix linting error 2025-04-19 08:04:56 -07:00
Ishaan Jaff
a62805f98f fixes for assistans API tests 2025-04-19 07:59:53 -07:00
Ishaan Jaff
5bf76f0bb1 test fixes for azure assistants 2025-04-19 07:36:40 -07:00
Krish Dholakia
ef6ac42658
Litellm dev 04 18 2025 p2 (#10157)
* fix(proxy/_types.py): allow internal user to call api playground

* fix(new_usage.tsx): cleanup tag based usage - only show for proxy admin

not clear what tags internal user should be allowed to see

* fix(team_endpoints.py): allow internal user view spend for teams they belong to

* fix(team_endpoints.py): return team alias on `/team/daily/activity` API

allows displaying team alias on ui

* fix: fix linting error

* fix(entity_usage.tsx): allow viewing top keys by team

* fix(entity_usage.tsx): show alias, if available in breakdown

allows entity alias to be easily displayed

* Show usage by key (on all up, team, and tag usage dashboards)  (#10152)

* fix(entity_usage.tsx): allow user to select team in team usage tab

* fix(new_usage.tsx): load all tags for filtering

* fix(tag_management_endpoints.py): return dynamic tags from db on `/tag/list`

* fix(litellm_pre_call_utils.py): support x-litellm-tags even if tag based routing not enabled

* fix(new_usage.tsx): show breakdown of usage by api key on dashboard

helpful when looking at spend by team

* fix(networking.tsx): exclude litellm-dashboard team id's from calls

adds noisy ui tokens to key activity

* fix(new_usage.tsx): allow user to see activity by key on main tab

* feat(internal_user_endpoints.py): refactor to use common_daily_activity function

reuses same logic across teams/keys/tags

Allows returning team_alias in api_keys consistently

* fix(leftnav.tsx): swap old usage with new usage tab

* fix(entity_usage.tsx): show breakdown of teams in daily spend chart

* style(new_usage.tsx): show global usage tab if user is admin / has admin view

* fix(new_usage.tsx): add disclaimer for new usage dashboard

* fix(new_usage.tsx): fix linting error

* Allow filtering usage dashboard by team + tag (#10150)

* fix(entity_usage.tsx): allow user to select team in team usage tab

* fix(new_usage.tsx): load all tags for filtering

* fix(tag_management_endpoints.py): return dynamic tags from db on `/tag/list`

* fix(litellm_pre_call_utils.py): support x-litellm-tags even if tag based routing not enabled

* fix: fix linting error
2025-04-19 07:32:23 -07:00
Ishaan Jaff
b9756bf006 test_completion_azure 2025-04-19 07:24:11 -07:00
Krish Dholakia
a1879cfa35
fix(litellm-proxy-extras/utils.py): prisma migrate improvements: handle existing columns in db table (#10138) 2025-04-18 20:36:56 -07:00
Krrish Dholakia
652e1b7f0f test: update test 2025-04-18 20:36:15 -07:00
Ishaan Jaff
6de3481252 doc fix 2025-04-18 19:57:03 -07:00
Ishaan Jaff
76f00a5121 add info on litellm release 2025-04-18 19:56:29 -07:00
Ishaan Jaff
3d5022bd79
[Feat] Support for all litellm providers on Responses API (works with Codex) - Anthropic, Bedrock API, VertexAI, Ollama (#10132)
* transform request

* basic handler for LiteLLMCompletionTransformationHandler

* complete transform litellm to responses api

* fixes to test

* fix stream=True

* fix streaming iterator

* fixes for transformation

* fixes for anthropic codex support

* fix pass response_api_optional_params

* test anthropic responses api tools

* update responses types

* working codex with litellm

* add session handler

* fixes streaming iterator

* fix handler

* add litellm codex example

* fix code quality

* test fix

* docs litellm codex

* litellm codexdoc

* docs openai codex with litellm

* docs litellm openai codex

* litellm codex

* linting fixes for transforming responses API

* fix import error

* fix responses api test

* add sync iterator support for responses api
2025-04-18 19:53:59 -07:00
Krrish Dholakia
3e87ec4f16 test: replace removed fireworks ai models
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 19s
Helm unit test / unit-test (push) Successful in 24s
2025-04-18 14:23:16 -07:00
Krish Dholakia
1ea046cc61
test: update tests to new deployment model (#10142)
* test: update tests to new deployment model

* test: update model name

* test: skip cohere rbac issue test

* test: update test - replace gpt-4o model
2025-04-18 14:22:12 -07:00
Krrish Dholakia
415abfc222 test: update test 2025-04-18 13:13:58 -07:00
David Emmanuel
de3c2d14bf
Add Gemini Flash 2.5 Preview Model Price and Context Window (#10125)
* Update model_prices_and_context_window_backup.json

* Update model_prices_and_context_window.json
2025-04-18 09:44:46 -07:00
Krrish Dholakia
f7dd688035 test: handle cohere rbac issue (verified happens on calling azure directly)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 15s
Helm unit test / unit-test (push) Successful in 23s
2025-04-18 08:42:12 -07:00
Krrish Dholakia
809eb859cf fix(azure/o_series_transformation.py): fix azure o4 model routing
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 41s
Helm unit test / unit-test (push) Successful in 49s
Fixes https://github.com/BerriAI/litellm/pull/10065#issuecomment-2814015058
2025-04-17 22:58:01 -07:00
Krrish Dholakia
614d80cb1b build(model_prices_and_context_window.json): add azure gpt-4.1 pricing
ensures cost tracking for gpt-4.1 works
2025-04-17 20:09:17 -07:00
Marc Abramowitz
3c71a81100
Remove unnecessary package*.json files (#10075) 2025-04-17 20:03:56 -07:00
Ishaan Jaff
19664960eb docs azure responses API 2025-04-17 18:47:44 -07:00
Marc Abramowitz
409dde22f6
UI: Make columns resizable/hideable in Models table (#10119)
* Make columns resizable in Models table

* Make edit and delete buttons sticky on right side

* Add Columns dropdown to control which columns are shown

* Remove unnecessary dependencies

* Fix title of visibility checkboxes for Input Cost and Output Cost

* Make the Columns dropdown close if the user clicks anywhere outside of it
2025-04-17 18:12:20 -07:00
Ishaan Jaff
d3e04eac7f
[Feat] Unified Responses API - Add Azure Responses API support (#10116)
* initial commit for azure responses api support

* update get complete url

* fixes for responses API

* working azure responses API

* working responses API

* test suite for responses API

* azure responses API test suite

* fix test with complete url

* fix test refactor

* test fix metadata checks

* fix code quality check
2025-04-17 16:47:59 -07:00
Krrish Dholakia
8be8022914 docs(vertex_ai.md): document new vertex passthrough route
Some checks failed
Read Version from pyproject.toml / read-version (push) Successful in 44s
Helm unit test / unit-test (push) Successful in 51s
Publish Prisma Migrations / publish-migrations (push) Failing after 2m16s
2025-04-16 22:25:16 -07:00
Krrish Dholakia
ff81f48af3 bump: version 1.66.2 → 1.66.3 2025-04-16 22:20:10 -07:00
Krrish Dholakia
78c6d73dea build: new ui build 2025-04-16 22:11:53 -07:00
Ishaan Jaff
257e78ffb5 test fix vertex_ai/mistral-large@2407 2025-04-16 21:52:52 -07:00
Krish Dholakia
8ddaf3dfbc
fix(o_series_transformation.py): correctly map o4 to openai o_series model (#10079)
Fixes https://github.com/BerriAI/litellm/issues/10066
2025-04-16 21:51:31 -07:00
Krish Dholakia
c73a6a8d1e
Add new /vertex_ai/discovery route - enables calling AgentBuilder API routes (#10084)
* feat(llm_passthrough_endpoints.py): expose new `/vertex_ai/discovery/` endpoint

Allows calling vertex ai discovery endpoints via passthrough

 For agentbuilder api calls

* refactor(llm_passthrough_endpoints.py): use common _base_vertex_proxy_route

Prevents duplicate code

* feat(llm_passthrough_endpoints.py): add vertex endpoint specific passthrough handlers
2025-04-16 21:45:51 -07:00
Ishaan Jaff
198922b26f test fixes for vertex mistral, this model was deprecated on vertex 2025-04-16 20:51:45 -07:00
Ishaan Jaff
c38146e180 test fix 2025-04-16 20:13:31 -07:00
Ishaan Jaff
cf801f9642 test fix vertex_ai/codestral 2025-04-16 20:01:36 -07:00
Ishaan Jaff
0ced13aec8
Virtual Keys: Filter by key alias (#10035) (#10085)
Co-authored-by: Christian Owusu <36159205+crisshaker@users.noreply.github.com>
2025-04-16 19:46:05 -07:00
Ishaan Jaff
2b14978d9d bump litellm proxy extras 2025-04-16 19:28:16 -07:00
Ishaan Jaff
12ccb954a6 ui new build 2025-04-16 19:23:04 -07:00
Ishaan Jaff
6220f3e7b8
[Feat SSO] Add LiteLLM SCIM Integration for Team and User management (#10072)
* fix NewUser response type

* add scim router

* add v0 scim v2 endpoints

* working scim transformation

* use 1 file for types

* fix scim firstname and givenName storage

* working SCIMErrorResponse

* working team / group provisioning on SCIM

* add SCIMPatchOp

* move scim folder

* fix import scim_router

* fix dont auto create scim keys

* add auth on all scim endpoints

* add is_virtual_key_allowed_to_call_route

* fix allowed routes

* fix for key management

* fix allowed routes check

* clean up error message

* fix code check

* fix for route checks

* ui SCIM support

* add UI tab for SCIM

* fixes SCIM

* fixes for SCIM settings on ui

* scim settings

* clean up scim view

* add migration for allowed_routes in keys table

* refactor scim transform

* fix SCIM linting error

* fix code quality check

* fix ui linting

* test_scim_transformations.py
2025-04-16 19:21:47 -07:00
Krish Dholakia
7ca553b235
Add team based usage dashboard at 1m+ spend logs (+ new /team/daily/activity API) (#10081)
* feat(ui/): add team based usage to dashboard

allows admin to see spend across teams + within teams at 1m+ spend logs

* fix(entity_usage.tsx): add activity page to entity usage

* style(entity_usage.tsx): place filter above tab switcher
2025-04-16 18:10:14 -07:00
Krish Dholakia
c0d7e9f16d
Add new /tag/daily/activity endpoint + Add tag dashboard to UI (#10073)
Some checks failed
Read Version from pyproject.toml / read-version (push) Successful in 15s
Helm unit test / unit-test (push) Successful in 24s
Publish Prisma Migrations / publish-migrations (push) Failing after 1m47s
* feat: initial commit adding daily tag spend table to db

* feat(db_spend_update_writer.py): correctly log tag spend transactions

* build(schema.prisma): add new tag table to root

* build: add new migration file

* feat(common_daily_activity.py): add `/tag/daily/activity` API endpoint

allows viewing daily spend by tag

* feat(tag_management_endpoints.py): support comma separated list of tags + tag breakdown metric

allows querying multiple tags + knowing what tags are driving spend

* feat(entity_usage.tsx): initial commit adding tag based usage to litellm dashboard

brings back tag based usage tracking to UI at 1m+ spend logs

* feat(entity_usage.tsx): add top api key view to ui

* feat(entity_usage.tsx): add tag table to ui

* feat(entity_usage.tsx): allow filtering by tag

* refactor(entity_usage.tsx): reorder components

* build(ui/): fix linting error

* fix: fix ruff checks

* fix(schema.prisma): drop uniqueness requirement on tag

allows dailytagspend to have multiple rows with the same tag

* build(schema.prisma): drop uniqueness requirement on tag in dailytagspend

allows tag agg. view to work on multiple rows with same tag

* build(schema.prisma): drop tag uniqueness requirement
2025-04-16 15:24:44 -07:00
Peter Dave Hello
5c078af738
Add OpenAI o3 & 4o-mini (#10065)
Reference:
- https://platform.openai.com/docs/models/o3
- https://platform.openai.com/docs/models/o4-mini
2025-04-16 12:40:13 -07:00
Krish Dholakia
d8a1071bc4
Add aggregate spend by tag (#10071)
* feat: initial commit adding daily tag spend table to db

* feat(db_spend_update_writer.py): correctly log tag spend transactions

* build(schema.prisma): add new tag table to root

* build: add new migration file
2025-04-16 12:26:21 -07:00
Krish Dholakia
47e811d6ce
fix(llm_http_handler.py): fix fake streaming (#10061)
* fix(llm_http_handler.py): fix fake streaming

allows groq to work with llm_http_handler

* fix(groq.py): migrate groq to openai like config

ensures json mode handling works correctly
2025-04-16 10:15:11 -07:00
Krish Dholakia
c603680d2a
fix(stream_chunk_builder_utils.py): don't set index on modelresponse (#10063)
* fix(stream_chunk_builder_utils.py): don't set index on modelresponse

* test: update tests
2025-04-16 10:11:47 -07:00
dependabot[bot]
7b7b43e1a7
build(deps): bump http-proxy-middleware in /docs/my-website (#10064)
Bumps [http-proxy-middleware](https://github.com/chimurai/http-proxy-middleware) from 2.0.7 to 2.0.9.
- [Release notes](https://github.com/chimurai/http-proxy-middleware/releases)
- [Changelog](https://github.com/chimurai/http-proxy-middleware/blob/v2.0.9/CHANGELOG.md)
- [Commits](https://github.com/chimurai/http-proxy-middleware/compare/v2.0.7...v2.0.9)

---
updated-dependencies:
- dependency-name: http-proxy-middleware
  dependency-version: 2.0.9
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-04-16 09:55:44 -07:00
Ishaan Jaff
a9e8a36f89
[Bug Fix] Azure Blob Storage fixes (#10059)
* Simple fix for #9339 - upgrade the underlying library and cache the azure storage client (#9965)

* fix -  use constants for caching azure storage client

---------

Co-authored-by: Adrian Lyjak <adrian@chatmeter.com>
2025-04-16 09:47:10 -07:00
Krrish Dholakia
a743b6fc1f fix(bedrock/common_utils.py): add us-west-1 to us regions 2025-04-16 08:00:39 -07:00
Krrish Dholakia
6b7d20c911 test: fix test 2025-04-16 07:57:10 -07:00
ChaoFu Yang
c07eea864e
/utils/token_counter: get model_info from deployment directly (#10047) 2025-04-16 07:53:18 -07:00
Michael Leshchinsky
e19d05980c
Add litellm call id passing to Aim guardrails on pre and post-hooks calls (#10021)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 16s
Helm unit test / unit-test (push) Successful in 19s
* Add litellm_call_id passing to aim guardrails on pre and post-hooks

* Add test that ensures that pre_call_hook receives litellm call id when common_request_processing called
2025-04-16 07:41:28 -07:00
Ishaan Jaff
ca593e003a bump litellm-proxy-extras==0.1.9
Some checks failed
Publish Prisma Migrations / publish-migrations (push) Failing after 36s
Read Version from pyproject.toml / read-version (push) Successful in 45s
Helm unit test / unit-test (push) Successful in 54s
2025-04-15 22:49:24 -07:00
Ishaan Jaff
1d4fea509d ui new build 2025-04-15 22:36:44 -07:00
Ishaan Jaff
ad09d250ef test fix azure deprecated mistral 2025-04-15 22:32:14 -07:00
Ishaan Jaff
dcc43e797a
[Docs] Auto prompt caching (#10044)
* docs prompt cache controls

* doc fix auto prompt caching
2025-04-15 22:29:47 -07:00
Krish Dholakia
fdfa1108a6
Add property ordering for vertex ai schema (#9828) + Fix combining multiple tool calls (#10040)
* fix #9783: Retain schema field ordering for google gemini and vertex (#9828)

* test: update test

* refactor(groq.py): initial commit migrating groq to base_llm_http_handler

* fix(streaming_chunk_builder_utils.py): fix how tool content is combined

Fixes https://github.com/BerriAI/litellm/issues/10034

* fix(vertex_ai/common_utils.py): prevent infinite loop in helper function

* fix(groq/chat/transformation.py): handle groq streaming errors correctly

* fix(groq/chat/transformation.py): handle max_retries

---------

Co-authored-by: Adrian Lyjak <adrian@chatmeter.com>
2025-04-15 22:29:25 -07:00
Krish Dholakia
1b9b745cae
Fix gcs pub sub logging with env var GCS_PROJECT_ID (#10042)
* fix(pub_sub.py): fix passing project id in pub sub call

Fixes issue where GCS_PUBSUB_PROJECT_ID was not being used

* test(test_pub_sub.py): add unit test to prevent future regressions

* test: fix test
2025-04-15 21:50:48 -07:00
Ishaan Jaff
b3f37b860d test fix azure deprecated mistral ai 2025-04-15 21:42:40 -07:00
Ishaan Jaff
bd88263b29
[Feat - Cost Tracking improvement] Track prompt caching metrics in DailyUserSpendTransactions (#10029)
* stash changes

* emit cache read/write tokens to daily spend update

* emit cache read/write tokens on daily activity

* update types.ts

* docs prompt caching

* undo ui change

* fix activity metrics

* fix prompt caching metrics

* fix typed dict fields

* fix get_aggregated_daily_spend_update_transactions

* fix aggregating cache tokens

* test_cache_token_fields_aggregation

* daily_transaction

* add cache_creation_input_tokens and cache_read_input_tokens to LiteLLM_DailyUserSpend

* test_daily_spend_update_queue.py
2025-04-15 21:40:57 -07:00
Ishaan Jaff
d32d6fe03e
[UI] Bug Fix - Show created_at and updated_at for Users Page (#10033)
* add created_at and updated_at as fields for internal user table

* test_get_users_includes_timestamps
2025-04-15 21:15:44 -07:00
Ishaan Jaff
70d740332f
[UI Polish] UI fixes for cache control injection settings (#10031)
* ui fixes for cache control

* docs inject cache control settings
2025-04-15 21:10:08 -07:00
Ishaan Jaff
65f8015221 test fix - azure deprecated azure ai mistral 2025-04-15 21:08:55 -07:00
Krish Dholakia
9b77559ccf
Add aggregate team based usage logging (#10039)
* feat(schema.prisma): initial commit adding aggregate table for team spend

allows team spend to be visible at 1m+ logs

* feat(db_spend_update_writer.py): support logging aggregate team spend

allows usage dashboard to work at 1m+ logs

* feat(litellm-proxy-extras/): add new migration file

* fix(db_spend_update_writer.py): fix return type

* build: bump requirements

* fix: fix ruff error
2025-04-15 20:58:48 -07:00
Krish Dholakia
d3e7a137ad
Revert "fix #9783: Retain schema field ordering for google gemini and vertex …" (#10038)
This reverts commit e3729f9855.
2025-04-15 19:21:33 -07:00
Adrian Lyjak
e3729f9855
fix #9783: Retain schema field ordering for google gemini and vertex (#9828) 2025-04-15 19:12:02 -07:00
Marc Abramowitz
837a6948d8
Fix typo: Entrata -> Entra in code (#9922)
* Fix typo: Entrata -> Entra

* Fix a few more
2025-04-15 17:31:18 -07:00
dependabot[bot]
81e7741107
build(deps): bump @babel/runtime in /ui/litellm-dashboard (#10001)
Bumps [@babel/runtime](https://github.com/babel/babel/tree/HEAD/packages/babel-runtime) from 7.23.9 to 7.27.0.
- [Release notes](https://github.com/babel/babel/releases)
- [Changelog](https://github.com/babel/babel/blob/main/CHANGELOG.md)
- [Commits](https://github.com/babel/babel/commits/v7.27.0/packages/babel-runtime)

---
updated-dependencies:
- dependency-name: "@babel/runtime"
  dependency-version: 7.27.0
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-04-15 16:35:26 -07:00
Joakim Lorentz
c9cf43df5b
chore(docs): Update logging.md (#10006)
Fixes a missing slash in OTEL_ENDPOINT example
2025-04-15 16:34:55 -07:00
Ishaan Jaff
09df3815b8 docs cache control injection points 2025-04-15 15:43:58 -07:00
Krrish Dholakia
ef80d25f16 bump: version 1.66.1 → 1.66.2
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 15s
Helm unit test / unit-test (push) Successful in 23s
2025-04-15 13:52:46 -07:00
Krrish Dholakia
8424171c2a fix(config_settings.md): cleanup 2025-04-15 13:41:22 -07:00
Krish Dholakia
6b5f093087
Revert "Fix case where only system messages are passed to Gemini (#9992)" (#10027)
This reverts commit 2afd922f8c.
2025-04-15 13:34:03 -07:00
Nolan Tremelling
2afd922f8c
Fix case where only system messages are passed to Gemini (#9992) 2025-04-15 13:30:49 -07:00
Michael Schmid
14bcc9a6c9
feat: update region configuration in AmazonBedrockGlobalConfig (#9430) 2025-04-15 09:59:32 -07:00
Krrish Dholakia
aff0d1a18c docs(cohere.md): add cohere cost tracking support to docs
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 17s
Helm unit test / unit-test (push) Successful in 25s
2025-04-14 23:46:58 -07:00
Krish Dholakia
33ead69c0a
Support checking provider /models endpoints on proxy /v1/models endpoint (#9958)
* feat(utils.py): support global flag for 'check_provider_endpoints'

enables setting this for `/models` on proxy

* feat(utils.py): add caching to 'get_valid_models'

Prevents checking endpoint repeatedly

* fix(utils.py): ensure mutations don't impact cached results

* test(test_utils.py): add unit test to confirm cache invalidation logic

* feat(utils.py): get_valid_models - support passing litellm params dynamically

Allows for checking endpoints based on received credentials

* test: update test

* feat(model_checks.py): pass router credentials to get_valid_models - ensures it checks correct credentials

* refactor(utils.py): refactor for simpler functions

* fix: fix linting errors

* fix(utils.py): fix test

* fix(utils.py): set valid providers to custom_llm_provider, if given

* test: update test

* fix: fix ruff check error
2025-04-14 23:23:20 -07:00
Eoous
e94eb4ec70
env for litellm.modify_params (#9964)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 17s
Helm unit test / unit-test (push) Successful in 23s
2025-04-14 22:33:56 -07:00
Ishaan Jaff
4f9bcd9b94
fix mock tests (#10003) 2025-04-14 22:09:22 -07:00
Krish Dholakia
9b0f871129
Add /vllm/* and /mistral/* passthrough endpoints (adds support for Mistral OCR via passthrough)
* feat(llm_passthrough_endpoints.py): support mistral passthrough

Closes https://github.com/BerriAI/litellm/issues/9051

* feat(llm_passthrough_endpoints.py): initial commit for adding vllm passthrough route

* feat(vllm/common_utils.py): add new vllm model info route

make it possible to use vllm passthrough route via factory function

* fix(llm_passthrough_endpoints.py): add all methods to vllm passthrough route

* fix: fix linting error

* fix: fix linting error

* fix: fix ruff check

* fix(proxy/_types.py): add new passthrough routes

* docs(config_settings.md): add mistral env vars to docs
2025-04-14 22:06:33 -07:00
Krish Dholakia
8faf56922c
Fix azure tenant id check from env var + response_format check on api_version 2025+ (#9993)
* fix(azure/common_utils.py): check for azure tenant id, client id, client secret in env var

Fixes https://github.com/BerriAI/litellm/issues/9598#issuecomment-2801966027

* fix(azure/gpt_transformation.py): fix passing response_format to azure when api year = 2025

Fixes https://github.com/BerriAI/litellm/issues/9703

* test: monkeypatch azure api version in test

* test: update testing

* test: fix test

* test: update test

* docs(config_settings.md): document env vars
2025-04-14 22:02:35 -07:00
Ishaan Jaff
ce2595f56a bump: version 1.66.0 → 1.66.1 2025-04-14 21:30:07 -07:00
Ishaan Jaff
b210639dce ui new build 2025-04-14 21:19:21 -07:00
Ishaan Jaff
c1a642ce20
[UI] Allow setting prompt cache_control_injection_points (#10000)
* test_anthropic_cache_control_hook_system_message

* test_anthropic_cache_control_hook.py

* should_run_prompt_management_hooks

* fix should_run_prompt_management_hooks

* test_anthropic_cache_control_hook_specific_index

* fix test

* fix linting errors

* ChatCompletionCachedContent

* initial commit for cache control

* fixes ui design

* fix inserting cache_control_injection_points

* fix entering cache control points

* fixes for using cache control on ui + backend

* update cache control settings on edit model page

* fix init custom logger compatible class

* fix linting errors

* fix linting errors

* fix get_chat_completion_prompt
2025-04-14 21:17:42 -07:00
Ishaan Jaff
6cfa50d278
[Feat] Add support for cache_control_injection_points for Anthropic API, Bedrock API (#9996)
* test_anthropic_cache_control_hook_system_message

* test_anthropic_cache_control_hook.py

* should_run_prompt_management_hooks

* fix should_run_prompt_management_hooks

* test_anthropic_cache_control_hook_specific_index

* fix test

* fix linting errors

* ChatCompletionCachedContent
2025-04-14 20:50:13 -07:00
Krish Dholakia
2ed593e052
Updated cohere v2 passthrough (#9997)
* Add cohere `/v2/chat` pass-through cost tracking support (#8235)

* feat(cohere_passthrough_handler.py): initial working commit with cohere passthrough cost tracking

* fix(v2_transformation.py): support cohere /v2/chat endpoint

* fix: fix linting errors

* fix: fix import

* fix(v2_transformation.py): fix linting error

* test: handle openai exception change
2025-04-14 19:51:01 -07:00
Marc Klingen
db857c74d4
chore: ordering of logging & observability docs (#9994) 2025-04-14 16:49:04 -07:00
Emerson Gomes
a2bc0c0f36
Fix cost for Phi-4-multimodal output token (#9880)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 17s
Helm unit test / unit-test (push) Successful in 23s
2025-04-14 14:31:34 -07:00
Ishaan Jaff
24447eb0cd
fix gpt 4.1 costs (#9991) 2025-04-14 12:50:14 -07:00
Krish Dholakia
bbb7541c22
build(model_prices_and_context_window.json): add gpt-4.1 pricing (#9990)
* build(model_prices_and_context_window.json): add gpt-4.1 pricing

* build(model_prices_and_context_window.json): add gpt-4.1-mini and gpt-4.1-nano model support
2025-04-14 12:14:46 -07:00
Ishaan Jaff
64bb89c70f docs fix
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 16s
Helm unit test / unit-test (push) Successful in 22s
2025-04-12 21:20:54 -07:00
Ishaan Jaff
0e99f83cc2 team info fix default index 2025-04-12 21:06:57 -07:00
Ishaan Jaff
999a9b4ac8 bump: version 1.65.8 → 1.66.0 2025-04-12 20:45:20 -07:00
Ishaan Jaff
72c1f7e09a ui new build 2025-04-12 20:42:43 -07:00
Ishaan Jaff
89dfb42697
[UI QA checklist] (#9957)
* fix typo on UI

* fix for edit user tab

* fix for user spend

* add /team/permissions_list to management routes

* fix auth check for team member permissions

* fix team endpoints test
2025-04-12 20:41:50 -07:00
Krrish Dholakia
2ed63da5f8 docs: cleanup 2025-04-12 19:52:19 -07:00
Krish Dholakia
00e49380df
Litellm UI qa 04 12 2025 p1 (#9955)
* fix(model_info_view.tsx): cleanup text

* fix(key_management_endpoints.py): fix filtering litellm-dashboard keys for internal users

* fix(proxy_track_cost_callback.py): prevent flooding spend logs with admin endpoint errors

* test: add unit testing for logic

* test(test_auth_exception_handler.py): add more unit testing

* fix(router.py): correctly handle retrieving model info on get_model_group_info

fixes issue where model hub was showing None prices

* fix: fix linting errors
2025-04-12 19:30:48 -07:00
Krrish Dholakia
f8d52e2db9 docs: refactor order 2025-04-12 19:23:07 -07:00
Krrish Dholakia
65e18f6abe docs(index.md): update changelog with realtime api cost tracking details 2025-04-12 19:15:40 -07:00
Krrish Dholakia
44368389f4 docs(litellm_managed_files.md): cleanup doc 2025-04-12 18:24:52 -07:00
Ishaan Jaff
2394cd465e
stable release note fixes (#9954)
* docs fix

* docs metrics

* docs fix release notes

* docs 1.66.0-stable
2025-04-12 17:26:38 -07:00
Ishaan Jaff
c86e678809
[Docs] v1.66.0-stable fixes (#9953)
* add categories for spend tracking improvements

* xai reasoning usage

* docs tag management

* docs tag based routing

* [Beta] Routing based

* docs tag based routing

* docs tag routing

* docs enterprise web search
2025-04-12 16:57:25 -07:00
Ishaan Jaff
eb998ee1c0
[v1.66.0-stable] Release notes (#9952)
* release notes

* docs release notes

* docs fix release notes

* docs clean up

* docs clean up

* release notes

* docs sso tag management
2025-04-12 15:32:52 -07:00
Krish Dholakia
25d4cf1c1d
Litellm managed files docs (#9948)
Some checks failed
Helm unit test / unit-test (push) Successful in 27s
Read Version from pyproject.toml / read-version (push) Successful in 43s
Publish Prisma Migrations / publish-migrations (push) Failing after 2m17s
* docs(files_endpoints.md): add doc on litellm managed files

* refactor: separate litellm managed file docs from `/files` docs

clearer

* docs(litellm_managed_files.md): add architecture diagram explaining managed files
2025-04-12 13:02:33 -07:00
Ishaan Jaff
4e81b2cab4
[Team Member permissions] - Fixes (#9945)
* only load member permissions for non-admins

* run member permission checks on update + regenerate endpoints

* run check for /key/generate

* working test_default_member_permissions

* passing test with permissions on update delete endpoints

* test_create_permissions

* _team_key_generation_check

* fix TeamBase

* fix team endpoints

* fix api docs check
2025-04-12 11:17:51 -07:00
Krrish Dholakia
d2a462fc93 ci: handle whl 2025-04-12 11:03:21 -07:00
Krrish Dholakia
4ea9887ff6 ci: see what's in tmp dir 2025-04-12 10:59:53 -07:00
Krrish Dholakia
0853b89864 build: use new litellm-proxy-extras version 2025-04-12 10:55:47 -07:00
Krrish Dholakia
7b465c24a9 fix(config.yml): only run publish_proxy_extras check on main 2025-04-12 10:30:32 -07:00
Krish Dholakia
d004fb542f
fix(litellm_proxy_extras): add baselining db script (#9942)
* fix(litellm_proxy_extras): add baselining db script

Fixes https://github.com/BerriAI/litellm/issues/9885

* fix(prisma_client.py): fix ruff errors

* ci(config.yml): add publish_proxy_extras step

* fix(config.yml): compare contents between versions to check for changes

* fix(config.yml): fix check

* fix: install toml

* fix: update check

* fix: ensure versions in sync

* fix: fix version compare

* fix: correct the cost for 'gemini/gemini-2.5-pro-preview-03-25' (#9896)

* fix: Typo in the cost 'gemini/gemini-2.5-pro-preview-03-25', closes #9854

* chore: update in backup file as well

* Litellm add managed files db (#9930)

* fix(openai.py): ensure openai file object shows up on logs

* fix(managed_files.py): return unified file id as b64 str

allows retrieve file id to work as expected

* fix(managed_files.py): apply decoded file id transformation

* fix: add unit test for file id + decode logic

* fix: initial commit for litellm_proxy support with CRUD Endpoints

* fix(managed_files.py): support retrieve file operation

* fix(managed_files.py): support for DELETE endpoint for files

* fix(managed_files.py): retrieve file content support

supports retrieve file content api from openai

* fix: fix linting error

* test: update tests

* fix: fix linting error

* feat(managed_files.py): support reading / writing files in DB

* feat(managed_files.py): support deleting file from DB on delete

* test: update testing

* fix(spend_tracking_utils.py): ensure each file create request is logged correctly

* fix(managed_files.py): fix storing / returning managed file object from cache

* fix(files/main.py): pass litellm params to azure route

* test: fix test

* build: add new prisma migration

* build: bump requirements

* test: add more testing

* refactor: cleanup post merge w/ main

* fix: fix code qa errors

* [DB / Infra] Add new column team_member_permissions  (#9941)

* add team_member_permissions to team table

* add migration.sql file

* fix poetry lock

* fix prisma migrations

* fix poetry lock

* fix migration

* ui new build

* fix(factory.py): correct indentation for message index increment in ollama,  This fixes bug #9822 (#9943)

* fix(factory.py): correct indentation for message index increment in ollama_pt function

* test: add unit tests for ollama_pt function handling various message types

* ci: update test

* fix: fix check

* ci: see what dir looks like

* ci: more checks

* ci: fix filepath

* ci: cleanup

* ci: fix ci

---------

Co-authored-by: Nilanjan De <nilanjan.de@gmail.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Dan Shaw <dan@danieljshaw.com>
2025-04-12 10:29:34 -07:00
Dan Shaw
433075a8d9
fix(factory.py): correct indentation for message index increment in ollama, This fixes bug #9822 (#9943)
* fix(factory.py): correct indentation for message index increment in ollama_pt function

* test: add unit tests for ollama_pt function handling various message types
2025-04-12 09:50:40 -07:00
Ishaan Jaff
69a3aab4c8 ui new build 2025-04-12 09:13:00 -07:00
Ishaan Jaff
fb0c3d9e18
[DB / Infra] Add new column team_member_permissions (#9941)
* add team_member_permissions to team table

* add migration.sql file

* fix poetry lock

* fix prisma migrations

* fix poetry lock

* fix migration
2025-04-12 09:06:04 -07:00
Krish Dholakia
421e0a3004
Litellm add managed files db (#9930)
* fix(openai.py): ensure openai file object shows up on logs

* fix(managed_files.py): return unified file id as b64 str

allows retrieve file id to work as expected

* fix(managed_files.py): apply decoded file id transformation

* fix: add unit test for file id + decode logic

* fix: initial commit for litellm_proxy support with CRUD Endpoints

* fix(managed_files.py): support retrieve file operation

* fix(managed_files.py): support for DELETE endpoint for files

* fix(managed_files.py): retrieve file content support

supports retrieve file content api from openai

* fix: fix linting error

* test: update tests

* fix: fix linting error

* feat(managed_files.py): support reading / writing files in DB

* feat(managed_files.py): support deleting file from DB on delete

* test: update testing

* fix(spend_tracking_utils.py): ensure each file create request is logged correctly

* fix(managed_files.py): fix storing / returning managed file object from cache

* fix(files/main.py): pass litellm params to azure route

* test: fix test

* build: add new prisma migration

* build: bump requirements

* test: add more testing

* refactor: cleanup post merge w/ main

* fix: fix code qa errors
2025-04-12 08:24:46 -07:00
Nilanjan De
93037ea4d3
fix: correct the cost for 'gemini/gemini-2.5-pro-preview-03-25' (#9896)
* fix: Typo in the cost 'gemini/gemini-2.5-pro-preview-03-25', closes #9854

* chore: update in backup file as well
2025-04-12 08:20:04 -07:00
dependabot[bot]
eb19639215
build(deps): bump @babel/runtime in /docs/my-website (#9934)
Bumps [@babel/runtime](https://github.com/babel/babel/tree/HEAD/packages/babel-runtime) from 7.26.0 to 7.27.0.
- [Release notes](https://github.com/babel/babel/releases)
- [Changelog](https://github.com/babel/babel/blob/main/CHANGELOG.md)
- [Commits](https://github.com/babel/babel/commits/v7.27.0/packages/babel-runtime)

---
updated-dependencies:
- dependency-name: "@babel/runtime"
  dependency-version: 7.27.0
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-04-12 07:45:53 -07:00
Krish Dholakia
069aee9f70
fix(transformation.py): correctly translate 'thinking' param for lite… (#9904)
All checks were successful
Helm unit test / unit-test (push) Successful in 21s
Read Version from pyproject.toml / read-version (push) Successful in 40s
* fix(transformation.py): correctly translate 'thinking' param for litellm_proxy/ route

Fixes https://github.com/BerriAI/litellm/issues/9892

* test: update test
2025-04-11 23:25:13 -07:00
Krish Dholakia
b9f01c9f5b
fix(databricks/common_utils.py): fix custom endpoint check (#9925)
* fix(databricks/common_utils.py): fix custom endpoint check

Fixes https://github.com/BerriAI/litellm/issues/9915

* fix(common_utils.py): add unit test to ensure custom_endpoint=False is handled correctly

Fixes https://github.com/BerriAI/litellm/issues/9915
2025-04-11 23:20:49 -07:00
Krish Dholakia
3ca82c22b6
Support CRUD endpoints for Managed Files (#9924)
* fix(openai.py): ensure openai file object shows up on logs

* fix(managed_files.py): return unified file id as b64 str

allows retrieve file id to work as expected

* fix(managed_files.py): apply decoded file id transformation

* fix: add unit test for file id + decode logic

* fix: initial commit for litellm_proxy support with CRUD Endpoints

* fix(managed_files.py): support retrieve file operation

* fix(managed_files.py): support for DELETE endpoint for files

* fix(managed_files.py): retrieve file content support

supports retrieve file content api from openai

* fix: fix linting error

* test: update tests

* fix: fix linting error

* fix(files/main.py): pass litellm params to azure route

* test: fix test
2025-04-11 21:48:27 -07:00
Ishaan Jaff
3e427e26c9 bump: version 1.65.7 → 1.65.8 2025-04-11 21:39:53 -07:00
Ishaan Jaff
cc8eebe349
[UI] Linting fixes (#9933)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 16s
Helm unit test / unit-test (push) Successful in 22s
* bump openai js version used on ui

* fix linting
2025-04-11 21:23:59 -07:00
Ishaan Jaff
e62f27188c
[UI] - Add Managing Team Member permissions on UI (#9927)
* add getTeamPermissionsCall and teamPermissionsUpdateCall to networking

* add ui changes for team member permission management

* fix linting error
2025-04-11 21:08:35 -07:00
Ishaan Jaff
7fde06d8d3
[UI] Render Reasoning content, ttft, usage metrics on test key page (#9931)
* add BaseReasoningEffortTests

* BaseReasoningLLMTests

* fix test rename

* docs update thinking / reasoning content docs

* show reasoning content on chat ui

* chat ui allow pasting in content

* chat ui fix size

* chat ui, show num reasoning tokens used

* ui render usage metrics on test key page
2025-04-11 21:08:10 -07:00
Ishaan Jaff
57bc03b30b
[Feat] Add reasoning_effort support for xai/grok-3-mini-beta model family (#9932)
* add BaseReasoningEffortTests

* BaseReasoningLLMTests

* fix test rename

* docs update thinking / reasoning content docs
2025-04-11 19:17:09 -07:00
Ishaan Jaff
f9ce754817
[Feat] Add litellm.supports_reasoning() util to track if an llm supports reasoning (#9923)
* add supports_reasoning for xai models

* add "supports_reasoning": true for o1 series models

* add supports_reasoning util

* add litellm.supports_reasoning

* add supports reasoning for claude 3-7 models

* add deepseek as supports reasoning

* test_supports_reasoning

* add supports reasoning to model group info

* add supports_reasoning

* docs supports reasoning

* fix supports_reasoning test

* "supports_reasoning": false,

* fix test

* supports_reasoning
2025-04-11 17:56:04 -07:00
Ishaan Jaff
311c70698f test_embedding_response_ratelimit_headers 2025-04-11 17:54:54 -07:00
Ishaan Jaff
91c0a794b9
[Feat - Team Member Permissions] - CRUD Endpoints for managing team member permissions (#9919)
* add team_member_permissions

* add GetTeamMemberPermissionsRequest types

* crud endpoint for team member permissions

* test team member permissions CRUD

* fix GetTeamMemberPermissionsRequest
2025-04-11 17:15:16 -07:00
Ishaan Jaff
2d6ad534bc
[Feat - PR1] Add xAI grok-3 models to LiteLLM (#9920)
* add xai/grok-3-mini-beta, xai/grok-3-beta

* add grok-3-fast-latest models

* supports_response_schema

* fix pricing

* docs xai
2025-04-11 15:12:12 -07:00
Marc Abramowitz
fc14931be9
Fix typo: Entrata -> Entra in docs (#9921) 2025-04-11 15:08:57 -07:00
Ishaan Jaff
8b1d2d6956
[Feat - UI] - Allow setting Default Team setting when LiteLLM SSO auto creates teams (#9918)
* endpoint for updating default team settings on ui

* add GET default team settings endpoint

* ui expose default team settings on UI

* update to use DefaultTeamSSOParams

* DefaultTeamSSOParams

* fix DefaultTeamSSOParams

* docs team management

* test_update_default_team_settings
2025-04-11 14:07:10 -07:00
Manuel Cañete
c4ea1ab61b
feat: add extraEnvVars to the helm deployment (#9292)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 17s
Helm unit test / unit-test (push) Successful in 22s
2025-04-11 10:32:16 -07:00
Krish Dholakia
0415f1205e
Litellm dev 04 10 2025 p3 (#9903)
* feat(managed_files.py): encode file type in unified file id

simplify calling gemini models

* fix(common_utils.py): fix extracting file type from unified file id

* fix(litellm_logging.py): create standard logging payload for create file call

* fix: fix linting error
2025-04-11 09:29:42 -07:00
Ishaan Jaff
8ecd9ede81 docs clean up
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 17s
Helm unit test / unit-test (push) Successful in 22s
2025-04-10 21:35:08 -07:00
Krish Dholakia
9f27e8363f
Realtime API: Support 'base_model' cost tracking + show response in spend logs (if enabled) (#9897)
* refactor(litellm_logging.py): refactor realtime cost tracking to use common code as rest

Ensures basic features like base model just work

* feat(realtime/): support 'base_model' cost tracking on realtime api

Fixes issue where base model was not working on realtime

* fix: fix ruff linting error

* test: fix test
2025-04-10 21:24:45 -07:00
Krish Dholakia
78879c68a9
Revert avglogprobs change + Add azure/gpt-4o-realtime-audio cost tracking (#9893)
* test: initial commit fixing gemini logprobs

Fixes https://github.com/BerriAI/litellm/issues/9888

* fix(vertex_and_google_ai_studio.py): Revert avglogprobs change

Fixes https://github.com/BerriAI/litellm/issues/8890

* build(model_prices_and_context_window.json): add gpt-4o-realtime-preview cost to model cost map

Fixes https://github.com/BerriAI/litellm/issues/9814

* test: add cost calculation unit testing

* test: fix test

* test: update test
2025-04-10 21:23:55 -07:00
Ishaan Jaff
892964272f docs msft SSO
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 21s
Helm unit test / unit-test (push) Successful in 25s
2025-04-10 20:33:14 -07:00
Ishaan Jaff
c71e98b05a docs MSFT sso 2025-04-10 20:30:52 -07:00
Ishaan Jaff
9ebbf52249 docs self serve msft SSO 2025-04-10 20:25:43 -07:00
Ishaan Jaff
1197746ab3 bump: version 1.65.6 → 1.65.7 2025-04-10 20:23:08 -07:00
Ishaan Jaff
595c0cbb42 docs msft default team settings 2025-04-10 20:22:46 -07:00
Ishaan Jaff
34b1bf2c75 docs msft_default_settings 2025-04-10 20:21:14 -07:00
Ishaan Jaff
f5c5c79ea4 update docs 2025-04-10 20:18:54 -07:00
Ishaan Jaff
98e34cbf5d
[Docs] Tutorial using MSFT auto team assignment with LiteLLM (#9898)
* add default_team_params as a config.yaml setting

* create_litellm_team_from_sso_group

* test_default_team_params

* test_create_team_without_default_params

* docs default team settings

* docs msft entra id tutorial

* commit litellm docs msft group assignment

* litellm MSFT sso

* member, team assignment on litellm

* docs msft auto assignment

* bug fix default team setting

* docs litellm default team settings

* test_default_team_params
2025-04-10 20:07:55 -07:00
Ishaan Jaff
72a12e91c4
[Bug Fix MSFT SSO] Use correct field for user email when using MSFT SSO (#9886)
* fix openid_from_response

* test_microsoft_sso_handler_openid_from_response_user_principal_name

* test upsert_sso_user
2025-04-10 17:40:58 -07:00
Ishaan Jaff
94a553dbb2
[Feat] Emit Key, Team Budget metrics on a cron job schedule (#9528)
* _initialize_remaining_budget_metrics

* initialize_budget_metrics_cron_job

* initialize_budget_metrics_cron_job

* initialize_budget_metrics_cron_job

* test_initialize_budget_metrics_cron_job

* LITELLM_PROXY_ADMIN_NAME

* fix code qa checks

* test_initialize_budget_metrics_cron_job

* test_initialize_budget_metrics_cron_job

* pod lock manager allow dynamic cron job ID

* fix pod lock manager

* require cronjobid for PodLockManager

* fix DB_SPEND_UPDATE_JOB_NAME acquire / release lock

* add comment on prometheus logger

* add debug statements for emitting key, team budget metrics

* test_pod_lock_manager.py

* test_initialize_budget_metrics_cron_job

* initialize_budget_metrics_cron_job

* initialize_remaining_budget_metrics

* remove outdated test
2025-04-10 16:59:14 -07:00
Ishaan Jaff
90d862b041
[Feat SSO] - Allow admins to set default_team_params to have default params for when litellm SSO creates default teams (#9895)
* add default_team_params as a config.yaml setting

* create_litellm_team_from_sso_group

* test_default_team_params

* test_create_team_without_default_params

* docs default team settings
2025-04-10 16:58:28 -07:00
Krrish Dholakia
7d383fc0c1 test: update testing 2025-04-10 14:15:58 -07:00
Krrish Dholakia
b168f8b744 test: update test 2025-04-10 14:04:57 -07:00
Krrish Dholakia
cd878bdd71 bump: version 1.65.5 → 1.65.6
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 17s
Helm unit test / unit-test (push) Successful in 24s
2025-04-09 22:32:50 -07:00
Krish Dholakia
0dbd663877
fix(cost_calculator.py): handle custom pricing at deployment level fo… (#9855)
* fix(cost_calculator.py): handle custom pricing at deployment level for router

* test: add unit tests

* fix(router.py): show custom pricing on UI

check correct model str

* fix: fix linting error

* docs(custom_pricing.md): clarify custom pricing for proxy

Fixes https://github.com/BerriAI/litellm/issues/8573#issuecomment-2790420740

* test: update code qa test

* fix: cleanup traceback

* fix: handle litellm param custom pricing

* test: update test

* fix(cost_calculator.py): add router model id to list of potential model names

* fix(cost_calculator.py): fix router model id check

* fix: router.py - maintain older model registry approach

* fix: fix ruff check

* fix(router.py): router get deployment info

add custom values to mapped dict

* test: update test

* fix(utils.py): update only if value is non-null

* test: add unit test
2025-04-09 22:13:10 -07:00
Krish Dholakia
0c5b4aa96d
feat(realtime/): add token tracking + log usage object in spend logs … (#9843)
* feat(realtime/): add token tracking + log usage object in spend logs metadata

* test: fix test

* test: update tests

* test: update testing

* test: update test

* test: update test

* test: update test

* test: update test

* test: update tesdt

* test: update test
2025-04-09 22:11:00 -07:00
Krish Dholakia
87733c8193
Fix anthropic prompt caching cost calc + trim logged message in db (#9838)
* fix(spend_tracking_utils.py): prevent logging entire mp4 files to db

Fixes https://github.com/BerriAI/litellm/issues/9732

* fix(anthropic/chat/transformation.py): Fix double counting cache creation input tokens

Fixes https://github.com/BerriAI/litellm/issues/9812

* refactor(anthropic/chat/transformation.py): refactor streaming to use same usage calculation block as non-streaming

reduce errors

* fix(bedrock/chat/converse_transformation.py): don't increment prompt tokens with cache_creation_input_tokens

* build: remove redisvl from requirements.txt (temporary)

* fix(spend_tracking_utils.py): handle circular references

* test: update code cov test

* test: update test
2025-04-09 21:26:43 -07:00
Ishaan Jaff
00c5c23d97 docs Microsoft Entra ID SSO group assignment 2025-04-09 21:07:47 -07:00
Ishaan Jaff
aed8d4ce21 bump: version 1.65.4 → 1.65.5
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 14s
Helm unit test / unit-test (push) Successful in 23s
2025-04-09 20:34:51 -07:00
Ishaan Jaff
1359e6d7a6
[SSO] Connect LiteLLM to Azure Entra ID Enterprise Application (#9872)
* refactor SSO handler

* render sso JWT on ui

* docs debug sso

* fix sso login flow use await

* fix ui sso debug JWT

* test ui sso

* remove redis vl

* fix redisvl==0.5.1

* fix ml dtypes

* fix redisvl

* fix redis vl

* fix debug_sso_callback

* fix linting error

* fix redis semantic caching dep

* working graph api assignment

* test msft sso handler openid

* testing for msft group assignment

* fix debug graph api sso flow

* fix linting errors

* add_user_to_teams_from_sso_response

* ui sso fix team assignments

* linting fix _get_group_ids_from_graph_api_response

* add MicrosoftServicePrincipalTeam

* create_litellm_teams_from_service_principal_team_ids

* create_litellm_teams_from_service_principal_team_ids

* docs MICROSOFT_SERVICE_PRINCIPAL_ID

* fix linting errors
2025-04-09 20:26:59 -07:00
Krish Dholakia
ac4f32fb1e
Cost tracking for gemini-2.5-pro (#9837)
* build(model_prices_and_context_window.json): add google/gemini-2.0-flash-lite-001 versioned pricing

Closes https://github.com/BerriAI/litellm/issues/9829

* build(model_prices_and_context_window.json): add initial support for 'supported_output_modalities' param

* build(model_prices_and_context_window.json): add initial support for 'supported_output_modalities' param

* build(model_prices_and_context_window.json): add supported endpoints to gemini-2.5-pro

* build(model_prices_and_context_window.json): add gemini 200k+ pricing

* feat(utils.py): support cost calculation for gemini-2.5-pro above 200k tokens

Fixes https://github.com/BerriAI/litellm/issues/9807

* build: test dockerfile change

* build: revert apk change

* ci(config.yml): pip install wheel

* ci: test problematic package first

* ci(config.yml): pip install only binary

* ci: try more things

* ci: test different ml_dtypes version

* ci(config.yml): check ml_dtypes==0.4.0

* ci: test

* ci: cleanup config.yml

* ci: specify ml dtypes in requirements.txt

* ci: remove redisvl depedency (temporary)

* fix: fix linting errors

* test: update test

* test: fix test
2025-04-09 18:48:43 -07:00
Ishaan Jaff
4c1bb74c3d
[Feat] - SSO - Use MSFT Graph API to assign users to teams (#9865)
* refactor SSO handler

* render sso JWT on ui

* docs debug sso

* fix sso login flow use await

* fix ui sso debug JWT

* test ui sso

* remove redis vl

* fix redisvl==0.5.1

* fix ml dtypes

* fix redisvl

* fix redis vl

* fix debug_sso_callback

* fix linting error

* fix redis semantic caching dep

* working graph api assignment

* test msft sso handler openid

* testing for msft group assignment

* fix debug graph api sso flow

* fix linting errors

* add_user_to_teams_from_sso_response

* fix linting error
2025-04-09 18:26:43 -07:00
Krrish Dholakia
a1433da4a7 fix: transform_request.tsx
don't hardcode to localhost
2025-04-09 17:50:13 -07:00
Krrish Dholakia
86bfb8cd66 Revert "docs: initial commit adding api playground to docs"
This reverts commit 9d68008152.
2025-04-09 17:50:13 -07:00
Krrish Dholakia
5ca93a1950 docs: initial commit adding api playground to docs
makes it easy to see how litellm transforms your request
2025-04-09 17:50:13 -07:00
Krrish Dholakia
3f3afabda9 feat(leftnav.tsx): show api playground on UI
allows easy testing on UI
2025-04-09 17:50:13 -07:00
Krrish Dholakia
b11c08bde3 fix(new_usage.tsx): increase page size + iterate through all pages if multiple pages 2025-04-09 17:50:13 -07:00
Krrish Dholakia
9ec1972926 fix(internal_user_endpoints.py): increase default page size for /user/daily/activity 2025-04-09 17:50:13 -07:00
Ishaan Jaff
6f7e9b9728
[Feat SSO] Debug route - allow admins to debug SSO JWT fields (#9835)
* refactor SSO handler

* render sso JWT on ui

* docs debug sso

* fix sso login flow use await

* fix ui sso debug JWT

* test ui sso

* remove redis vl

* fix redisvl==0.5.1

* fix ml dtypes

* fix redisvl

* fix redis vl

* fix debug_sso_callback

* fix linting error

* fix redis semantic caching dep
2025-04-09 15:29:35 -07:00
Ishaan Jaff
08a3620414
[Bug Fix] Add support for UploadFile on LLM Pass through endpoints (OpenAI, Azure etc) (#9853)
* http passthrough file handling

* fix make_multipart_http_request

* test_pass_through_file_operations

* unit tests for file handling
2025-04-09 15:29:20 -07:00
Krish Dholakia
6ba3c4a4f8
VertexAI non-jsonl file storage support (#9781)
* test: add initial e2e test

* fix(vertex_ai/files): initial commit adding sync file create support

* refactor: initial commit of vertex ai non-jsonl files reaching gcp endpoint

* fix(vertex_ai/files/transformation.py): initial working commit of non-jsonl file call reaching backend endpoint

* fix(vertex_ai/files/transformation.py): working e2e non-jsonl file upload

* test: working e2e jsonl call

* test: unit testing for jsonl file creation

* fix(vertex_ai/transformation.py): reset file pointer after read

allow multiple reads on same file object

* fix: fix linting errors

* fix: fix ruff linting errors

* fix: fix import

* fix: fix linting error

* fix: fix linting error

* fix(vertex_ai/files/transformation.py): fix linting error

* test: update test

* test: update tests

* fix: fix linting errors

* fix: fix test

* fix: fix linting error
2025-04-09 14:01:48 -07:00
qvalentin
93532e00db
feat: add enterpriseWebSearch tool for vertex-ai (#9856) 2025-04-09 13:17:48 -07:00
Emerson Gomes
d5e362459c
Update Azure Phi-4 pricing (#9862)
Updates Phi-4 family model prices with recently published info
2025-04-09 13:17:00 -07:00
Jacob Hagstedt P Suorra
dc9bfae053
Add user alias to API endpoint (#9859)
Co-authored-by: Jacob Hagstedt <wcgs@novonordisk.com>
2025-04-09 13:16:35 -07:00
Christian Owusu
d4e5da87be
Reflect key and team update in UI (#9825)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 16s
Helm unit test / unit-test (push) Successful in 23s
* Reflect updates to keys in UI instantly

* Reflect updates to teams in UI instantly
2025-04-09 07:47:16 -07:00
Marcus Hynfield
cc7d59a11e
Add service annotations to litellm-helm chart (#9840)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 15s
Helm unit test / unit-test (push) Successful in 22s
2025-04-08 21:42:09 -07:00
Ishaan Jaff
357f081d1c fix mldtypes dep
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 14s
Helm unit test / unit-test (push) Successful in 23s
2025-04-08 17:25:28 -07:00
Ishaan Jaff
9f33e9b3e8 pin ml-dtypes==0.4.0 2025-04-08 17:24:08 -07:00
Li Yang
11389535d5
chore: fix haiku cache read pricing per token (#9834) 2025-04-08 16:43:09 -07:00
Krrish Dholakia
a3ea079583 docs(gemini.md): show how to call google search via litellm
Addresses https://github.com/BerriAI/litellm/issues/361#issuecomment-2787497217
2025-04-08 16:41:24 -07:00
Ishaan Jaff
c403dfb615 pip install --upgrade pip wheel setuptools 2025-04-08 16:38:44 -07:00
Ishaan Jaff
8a596dbe8c pip install wheel 2025-04-08 16:27:09 -07:00
dependabot[bot]
73356b3a9f
Bump next from 14.2.25 to 14.2.26 in /ui/litellm-dashboard (#9716)
Bumps [next](https://github.com/vercel/next.js) from 14.2.25 to 14.2.26.
- [Release notes](https://github.com/vercel/next.js/releases)
- [Changelog](https://github.com/vercel/next.js/blob/canary/release.js)
- [Commits](https://github.com/vercel/next.js/compare/v14.2.25...v14.2.26)

---
updated-dependencies:
- dependency-name: next
  dependency-version: 14.2.26
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-04-08 14:15:19 -07:00
Ishaan Jaff
441c7275ed
test fix post call rules (#9826) 2025-04-08 13:55:37 -07:00
Ishaan Jaff
e6403b717c
[Security fix - CVE-2025-0330] - Leakage of Langfuse API keys in team exception handling (#9830)
* fix team id exception in get team config

* test_team_info_masking

* test ref
2025-04-08 13:55:20 -07:00
Krrish Dholakia
367f48004d build(model_prices_and_context_window.json): consistent params 2025-04-08 12:45:33 -07:00
Peter Dave Hello
6b67006b0c
Remove redundant apk update in Dockerfiles (cc #5016) (#9055)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 17s
Helm unit test / unit-test (push) Successful in 18s
The `apk` commands can utilize the `--no-cache` option, making the
`update` step superfluous and ensuring the latest packages are used
without maintaining a local cache. An additional `apk update` in the
Dockerfile will just make the image larger with no benefits.
2025-04-08 09:03:25 -07:00
Ishaan Jaff
ff3a6830a4
[Feat] LiteLLM Tag/Policy Management (#9813)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 15s
Helm unit test / unit-test (push) Successful in 21s
* rendering tags on UI

* use /models for building tags

* CRUD endpoints for Tag management

* fix tag management

* working api for LIST tags

* working tag management

* refactor UI components

* fixes ui tag management

* clean up ui tag management

* fix tag management ui

* fix show allowed llms

* e2e tag controls

* stash change for rendering tags on UI

* ui working tag selector on Test Key page

* fixes for tag management

* clean up tag info

* fix code quality

* test for tag management

* ui clarify what tag routing is
2025-04-07 21:54:24 -07:00
Krish Dholakia
ac9f03beae
Allow passing thinking param to litellm proxy via client sdk + Code QA Refactor on get_optional_params (get correct values) (#9386)
* fix(litellm_proxy/chat/transformation.py): support 'thinking' param

Fixes https://github.com/BerriAI/litellm/issues/9380

* feat(azure/gpt_transformation.py): add azure audio model support

Closes https://github.com/BerriAI/litellm/issues/6305

* fix(utils.py): use provider_config in common functions

* fix(utils.py): add missing provider configs to get_chat_provider_config

* test: fix test

* fix: fix path

* feat(utils.py): make bedrock invoke nova config baseconfig compatible

* fix: fix linting errors

* fix(azure_ai/transformation.py): remove buggy optional param filtering for azure ai

Removes incorrect check for support tool choice when calling azure ai - prevented calling models with response_format unless on litell model cost map

* fix(amazon_cohere_transformation.py): fix bedrock invoke cohere transformation to inherit from coherechatconfig

* test: fix azure ai tool choice mapping

* fix: fix model cost map to add 'supports_tool_choice' to cohere models

* fix(get_supported_openai_params.py): check if custom llm provider in llm providers

* fix(get_supported_openai_params.py): fix llm provider in list check

* fix: fix ruff check errors

* fix: support defs when calling bedrock nova

* fix(factory.py): fix test
2025-04-07 21:04:11 -07:00
Krish Dholakia
fcf17d114f
Litellm dev 04 05 2025 p2 (#9774)
* test: move test to just checking async

* fix(transformation.py): handle function call with no schema

* fix(utils.py): handle pydantic base model in message tool calls

Fix https://github.com/BerriAI/litellm/issues/9321

* fix(vertex_and_google_ai_studio.py): handle tools=[]

Fixes https://github.com/BerriAI/litellm/issues/9080

* test: remove max token restriction

* test: fix basic test

* fix(get_supported_openai_params.py): fix check

* fix(converse_transformation.py): support fake streaming for meta.llama3-3-70b-instruct-v1:0

* fix: fix test

* fix: parse out empty dictionary on dbrx streaming + tool calls

* fix(handle-'strict'-param-when-calling-fireworks-ai): fireworks ai does not support 'strict' param

* fix: fix ruff check

'

* fix: handle no strict in function

* fix: revert bedrock change - handle in separate PR
2025-04-07 21:02:52 -07:00
Ishaan Jaff
d8f47fc9e5 databricks/databricks-meta-llama-3-3-70b-instruct 2025-04-07 20:16:24 -07:00
Krish Dholakia
8d338aee78
fix(databricks/chat/transformation.py): remove reasoning_effort from request (#9811)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 16s
Helm unit test / unit-test (push) Successful in 27s
Fixes https://github.com/BerriAI/litellm/issues/9700#issuecomment-2784431995
2025-04-07 19:43:19 -07:00
Krrish Dholakia
fef2af0b17 test: fix flaky test 2025-04-07 19:42:58 -07:00
Krish Dholakia
8e3c7b2de0
fix(vertex_ai.py): move to only passing in accepted keys by vertex ai response schema (#8992)
* fix(vertex_ai.py): common_utils.py

move to only passing in accepted keys by vertex ai

prevent json schema compatible keys like $id, and $comment from causing vertex ai openapi calls to fail

* fix(test_vertex.py): add testing to ensure only accepted schema params passed in

* fix(common_utils.py): fix linting error

* test: update test

* test: accept function
2025-04-07 18:07:01 -07:00
Krish Dholakia
4a128cfd64
Realtime API Cost tracking (#9795)
* fix(proxy_server.py): log realtime calls to spendlogs

Fixes https://github.com/BerriAI/litellm/issues/8410

* feat(realtime/): OpenAI Realtime API cost tracking

Closes https://github.com/BerriAI/litellm/issues/8410

* test: add unit testing for coverage

* test: add more unit testing

* fix: handle edge cases
2025-04-07 16:43:12 -07:00
Krish Dholakia
9a60cd9deb
fix(gemini/transformation.py): handle file_data being passed in (#9786) 2025-04-07 16:32:08 -07:00
Krrish Dholakia
0307a0133b docs: fix doc
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 17s
Helm unit test / unit-test (push) Successful in 23s
2025-04-07 07:21:00 -07:00
Krrish Dholakia
3a7d729d88 docs: cleanup
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 15s
Helm unit test / unit-test (push) Successful in 24s
2025-04-06 14:42:35 -07:00
Krrish Dholakia
0137055bad docs: cleanup 2025-04-06 14:39:28 -07:00
KX
0ac896a6f2
feat: add offline swagger docs (#7653) 2025-04-06 13:55:06 -07:00
Krrish Dholakia
f4c9dce211 docs: cleanup docs
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 16s
Helm unit test / unit-test (push) Successful in 23s
2025-04-06 09:40:17 -07:00
Krish Dholakia
792ee079c2
Litellm 04 05 2025 release notes (#9785)
* docs: update docs

* docs: additional cleanup

* docs(index.md): add initial links

* docs: more doc updates

* docs(index.md): add more links

* docs(files.md): add gemini files API to docs

* docs(index.md): add more docs

* docs: more docs

* docs: update docs
2025-04-06 09:03:51 -07:00
Ishaan Jaff
52b35cd809
[UI Polish] - Polish login screen (#9778)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 21s
Helm unit test / unit-test (push) Successful in 24s
* fix admin ui utils login screen

* ui - add layer of polish on login screen

* ui fix design of login page

* ui fix color scheme on login page
2025-04-05 14:56:03 -07:00
Ishaan Jaff
3769c5cc30 docs release notes 2025-04-05 14:54:47 -07:00
Ishaan Jaff
7262606411 test_completion_cost_databricks 2025-04-05 13:30:17 -07:00
Ishaan Jaff
d87bb9bb6e test_completion_cost_databricks 2025-04-05 13:13:25 -07:00
Ishaan Jaff
1638872762 databricks/databricks-meta-llama-3.3-70b-instruct" 2025-04-05 13:12:21 -07:00
Ishaan Jaff
7f6de81196 ui new build 2025-04-05 12:30:37 -07:00
Ishaan Jaff
80eb1ac8fa
[UI QA/Bug Fix] - Don't change team, key, org, model values on scroll (#9776)
* UI - use 1 component for numerical input

* disable scroll number values on models page

* team edit - disable numerical value scroll

* fix numerical input view

* use numerical component on create key

* add NumericalInput

* ui fix org numerical input

* remove file in incorrect location

* fix NumericalInput
2025-04-05 12:29:31 -07:00
Ishaan Jaff
3a7061a05c
bug fix de depluciate model list (#9775) 2025-04-05 12:29:11 -07:00
Krish Dholakia
34bdf36eab
Add inference providers support for Hugging Face (#8258) (#9738) (#9773)
* Add inference providers support for Hugging Face (#8258)

* add first version of inference providers for huggingface

* temporarily skipping tests

* Add documentation

* Fix titles

* remove max_retries from params and clean up

* add suggestions

* use llm http handler

* update doc

* add suggestions

* run formatters

* add tests

* revert

* revert

* rename file

* set maxsize for lru cache

* fix embeddings

* fix inference url

* fix tests following breaking change in main

* use ChatCompletionRequest

* fix tests and lint

* [Hugging Face] Remove outdated chat completion tests and fix embedding tests (#9749)

* remove or fix tests

* fix link in doc

* fix(config_settings.md): document hf api key

---------

Co-authored-by: célina <hanouticelina@gmail.com>
2025-04-05 10:50:15 -07:00
684 changed files with 40182 additions and 10056 deletions

View file

@ -610,6 +610,8 @@ jobs:
name: Install Dependencies
command: |
python -m pip install --upgrade pip
pip install wheel
pip install --upgrade pip wheel setuptools
python -m pip install -r requirements.txt
pip install "pytest==7.3.1"
pip install "respx==0.21.1"
@ -1125,6 +1127,7 @@ jobs:
name: Install Dependencies
command: |
python -m pip install --upgrade pip
python -m pip install wheel setuptools
python -m pip install -r requirements.txt
pip install "pytest==7.3.1"
pip install "pytest-retry==1.6.3"
@ -2387,6 +2390,114 @@ jobs:
echo "triggering load testing server for version ${VERSION} and commit ${CIRCLE_SHA1}"
curl -X POST "https://proxyloadtester-production.up.railway.app/start/load/test?version=${VERSION}&commit_hash=${CIRCLE_SHA1}&release_type=nightly"
publish_proxy_extras:
docker:
- image: cimg/python:3.8
working_directory: ~/project/litellm-proxy-extras
environment:
TWINE_USERNAME: __token__
steps:
- checkout:
path: ~/project
- run:
name: Check if litellm-proxy-extras dir or pyproject.toml was modified
command: |
echo "Install TOML package."
python -m pip install toml
# Get current version from pyproject.toml
CURRENT_VERSION=$(python -c "import toml; print(toml.load('pyproject.toml')['tool']['poetry']['version'])")
# Get last published version from PyPI
LAST_VERSION=$(curl -s https://pypi.org/pypi/litellm-proxy-extras/json | python -c "import json, sys; print(json.load(sys.stdin)['info']['version'])")
echo "Current version: $CURRENT_VERSION"
echo "Last published version: $LAST_VERSION"
# Compare versions using Python's packaging.version
VERSION_COMPARE=$(python -c "from packaging import version; print(1 if version.parse('$CURRENT_VERSION') < version.parse('$LAST_VERSION') else 0)")
echo "Version compare: $VERSION_COMPARE"
if [ "$VERSION_COMPARE" = "1" ]; then
echo "Error: Current version ($CURRENT_VERSION) is less than last published version ($LAST_VERSION)"
exit 1
fi
# If versions are equal or current is greater, check contents
pip download --no-deps litellm-proxy-extras==$LAST_VERSION -d /tmp
echo "Contents of /tmp directory:"
ls -la /tmp
# Find the downloaded file (could be .whl or .tar.gz)
DOWNLOADED_FILE=$(ls /tmp/litellm_proxy_extras-*)
echo "Downloaded file: $DOWNLOADED_FILE"
# Extract based on file extension
if [[ "$DOWNLOADED_FILE" == *.whl ]]; then
echo "Extracting wheel file..."
unzip -q "$DOWNLOADED_FILE" -d /tmp/extracted
EXTRACTED_DIR="/tmp/extracted"
else
echo "Extracting tar.gz file..."
tar -xzf "$DOWNLOADED_FILE" -C /tmp
EXTRACTED_DIR="/tmp/litellm_proxy_extras-$LAST_VERSION"
fi
echo "Contents of extracted package:"
ls -R "$EXTRACTED_DIR"
# Compare contents
if ! diff -r "$EXTRACTED_DIR/litellm_proxy_extras" ./litellm_proxy_extras; then
if [ "$CURRENT_VERSION" = "$LAST_VERSION" ]; then
echo "Error: Changes detected in litellm-proxy-extras but version was not bumped"
echo "Current version: $CURRENT_VERSION"
echo "Last published version: $LAST_VERSION"
echo "Changes:"
diff -r "$EXTRACTED_DIR/litellm_proxy_extras" ./litellm_proxy_extras
exit 1
fi
else
echo "No changes detected in litellm-proxy-extras. Skipping PyPI publish."
circleci step halt
fi
- run:
name: Get new version
command: |
cd litellm-proxy-extras
NEW_VERSION=$(python -c "import toml; print(toml.load('pyproject.toml')['tool']['poetry']['version'])")
echo "export NEW_VERSION=$NEW_VERSION" >> $BASH_ENV
- run:
name: Check if versions match
command: |
cd ~/project
# Check pyproject.toml
CURRENT_VERSION=$(python -c "import toml; print(toml.load('pyproject.toml')['tool']['poetry']['dependencies']['litellm-proxy-extras'].split('\"')[1])")
if [ "$CURRENT_VERSION" != "$NEW_VERSION" ]; then
echo "Error: Version in pyproject.toml ($CURRENT_VERSION) doesn't match new version ($NEW_VERSION)"
exit 1
fi
# Check requirements.txt
REQ_VERSION=$(grep -oP 'litellm-proxy-extras==\K[0-9.]+' requirements.txt)
if [ "$REQ_VERSION" != "$NEW_VERSION" ]; then
echo "Error: Version in requirements.txt ($REQ_VERSION) doesn't match new version ($NEW_VERSION)"
exit 1
fi
- run:
name: Publish to PyPI
command: |
cd litellm-proxy-extras
echo -e "[pypi]\nusername = $PYPI_PUBLISH_USERNAME\npassword = $PYPI_PUBLISH_PASSWORD" > ~/.pypirc
python -m pip install --upgrade pip build twine setuptools wheel
rm -rf build dist
python -m build
twine upload --verbose dist/*
e2e_ui_testing:
machine:
image: ubuntu-2204:2023.10.1
@ -2782,6 +2893,11 @@ workflows:
only:
- main
- /litellm_.*/
- publish_proxy_extras:
filters:
branches:
only:
- main
- publish_to_pypi:
requires:
- local_testing
@ -2816,7 +2932,5 @@ workflows:
- proxy_build_from_pip_tests
- proxy_pass_through_endpoint_tests
- check_code_and_doc_quality
filters:
branches:
only:
- main
- publish_proxy_extras

View file

@ -20,6 +20,8 @@ REPLICATE_API_TOKEN = ""
ANTHROPIC_API_KEY = ""
# Infisical
INFISICAL_TOKEN = ""
# INFINITY
INFINITY_API_KEY = ""
# Development Configs
LITELLM_MASTER_KEY = "sk-1234"

3
.gitignore vendored
View file

@ -73,6 +73,7 @@ tests/local_testing/log.txt
.codegpt
litellm/proxy/_new_new_secret_config.yaml
litellm/proxy/custom_guardrail.py
.mypy_cache/*
litellm/proxy/_experimental/out/404.html
litellm/proxy/_experimental/out/404.html
litellm/proxy/_experimental/out/model_hub.html
@ -85,3 +86,5 @@ litellm/proxy/db/migrations/0_init/migration.sql
litellm/proxy/db/migrations/*
litellm/proxy/migrations/*config.yaml
litellm/proxy/migrations/*
config.yaml
tests/litellm/litellm_core_utils/llm_cost_calc/log.txt

View file

@ -12,8 +12,7 @@ WORKDIR /app
USER root
# Install build dependencies
RUN apk update && \
apk add --no-cache gcc python3-dev openssl openssl-dev
RUN apk add --no-cache gcc python3-dev openssl openssl-dev
RUN pip install --upgrade pip && \
@ -52,8 +51,7 @@ FROM $LITELLM_RUNTIME_IMAGE AS runtime
USER root
# Install runtime dependencies
RUN apk update && \
apk add --no-cache openssl
RUN apk add --no-cache openssl
WORKDIR /app
# Copy the current directory contents into the container at /app

View file

@ -6,8 +6,9 @@
"id": "9dKM5k8qsMIj"
},
"source": [
"## LiteLLM HuggingFace\n",
"Docs for huggingface: https://docs.litellm.ai/docs/providers/huggingface"
"## LiteLLM Hugging Face\n",
"\n",
"Docs for huggingface: https://docs.litellm.ai/docs/providers/huggingface\n"
]
},
{
@ -27,23 +28,18 @@
"id": "yp5UXRqtpu9f"
},
"source": [
"## Hugging Face Free Serverless Inference API\n",
"Read more about the Free Serverless Inference API here: https://huggingface.co/docs/api-inference.\n",
"## Serverless Inference Providers\n",
"\n",
"In order to use litellm to call Serverless Inference API:\n",
"Read more about Inference Providers here: https://huggingface.co/blog/inference-providers.\n",
"\n",
"* Browse Serverless Inference compatible models here: https://huggingface.co/models?inference=warm&pipeline_tag=text-generation.\n",
"* Copy the model name from hugging face\n",
"* Set `model = \"huggingface/<model-name>\"`\n",
"In order to use litellm with Hugging Face Inference Providers, you need to set `model=huggingface/<provider>/<model-id>`.\n",
"\n",
"Example set `model=huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct` to call `meta-llama/Meta-Llama-3.1-8B-Instruct`\n",
"\n",
"https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct"
"Example: `huggingface/together/deepseek-ai/DeepSeek-R1` to run DeepSeek-R1 (https://huggingface.co/deepseek-ai/DeepSeek-R1) through Together AI.\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@ -51,107 +47,18 @@
"id": "Pi5Oww8gpCUm",
"outputId": "659a67c7-f90d-4c06-b94e-2c4aa92d897a"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ModelResponse(id='chatcmpl-c54dfb68-1491-4d68-a4dc-35e603ea718a', choices=[Choices(finish_reason='eos_token', index=0, message=Message(content=\"I'm just a computer program, so I don't have feelings, but thank you for asking! How can I assist you today?\", role='assistant', tool_calls=None, function_call=None))], created=1724858285, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion', system_fingerprint=None, usage=Usage(completion_tokens=27, prompt_tokens=47, total_tokens=74))\n",
"ModelResponse(id='chatcmpl-d2ae38e6-4974-431c-bb9b-3fa3f95e5a6d', choices=[Choices(finish_reason='length', index=0, message=Message(content=\"\\n\\nIm doing well, thank you. Ive been keeping busy with work and some personal projects. How about you?\\n\\nI'm doing well, thank you. I've been enjoying some time off and catching up on some reading. How can I assist you today?\\n\\nI'm looking for a good book to read. Do you have any recommendations?\\n\\nOf course! Here are a few book recommendations across different genres:\\n\\n1.\", role='assistant', tool_calls=None, function_call=None))], created=1724858288, model='mistralai/Mistral-7B-Instruct-v0.3', object='chat.completion', system_fingerprint=None, usage=Usage(completion_tokens=85, prompt_tokens=6, total_tokens=91))\n"
]
}
],
"outputs": [],
"source": [
"import os\n",
"import litellm\n",
"from litellm import completion\n",
"\n",
"# Make sure to create an API_KEY with inference permissions at https://huggingface.co/settings/tokens/new?globalPermissions=inference.serverless.write&tokenType=fineGrained\n",
"os.environ[\"HUGGINGFACE_API_KEY\"] = \"\"\n",
"# You can create a HF token here: https://huggingface.co/settings/tokens\n",
"os.environ[\"HF_TOKEN\"] = \"hf_xxxxxx\"\n",
"\n",
"# Call https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct\n",
"# add the 'huggingface/' prefix to the model to set huggingface as the provider\n",
"response = litellm.completion(\n",
" model=\"huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
" messages=[{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}]\n",
")\n",
"print(response)\n",
"\n",
"\n",
"# Call https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3\n",
"response = litellm.completion(\n",
" model=\"huggingface/mistralai/Mistral-7B-Instruct-v0.3\",\n",
" messages=[{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}]\n",
")\n",
"print(response)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-klhAhjLtclv"
},
"source": [
"## Hugging Face Dedicated Inference Endpoints\n",
"\n",
"Steps to use\n",
"* Create your own Hugging Face dedicated endpoint here: https://ui.endpoints.huggingface.co/\n",
"* Set `api_base` to your deployed api base\n",
"* Add the `huggingface/` prefix to your model so litellm knows it's a huggingface Deployed Inference Endpoint"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Lbmw8Gl_pHns",
"outputId": "ea8408bf-1cc3-4670-ecea-f12666d204a8"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\n",
" \"object\": \"chat.completion\",\n",
" \"choices\": [\n",
" {\n",
" \"finish_reason\": \"length\",\n",
" \"index\": 0,\n",
" \"message\": {\n",
" \"content\": \"\\n\\nI am doing well, thank you for asking. How about you?\\nI am doing\",\n",
" \"role\": \"assistant\",\n",
" \"logprobs\": -8.9481967812\n",
" }\n",
" }\n",
" ],\n",
" \"id\": \"chatcmpl-74dc9d89-3916-47ce-9bea-b80e66660f77\",\n",
" \"created\": 1695871068.8413374,\n",
" \"model\": \"glaiveai/glaive-coder-7b\",\n",
" \"usage\": {\n",
" \"prompt_tokens\": 6,\n",
" \"completion_tokens\": 18,\n",
" \"total_tokens\": 24\n",
" }\n",
"}\n"
]
}
],
"source": [
"import os\n",
"import litellm\n",
"\n",
"os.environ[\"HUGGINGFACE_API_KEY\"] = \"\"\n",
"\n",
"# TGI model: Call https://huggingface.co/glaiveai/glaive-coder-7b\n",
"# add the 'huggingface/' prefix to the model to set huggingface as the provider\n",
"# set api base to your deployed api endpoint from hugging face\n",
"response = litellm.completion(\n",
" model=\"huggingface/glaiveai/glaive-coder-7b\",\n",
" messages=[{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}],\n",
" api_base=\"https://wjiegasee9bmqke2.us-east-1.aws.endpoints.huggingface.cloud\"\n",
"# Call DeepSeek-R1 model through Together AI\n",
"response = completion(\n",
" model=\"huggingface/together/deepseek-ai/DeepSeek-R1\",\n",
" messages=[{\"content\": \"How many r's are in the word `strawberry`?\", \"role\": \"user\"}],\n",
")\n",
"print(response)"
]
@ -162,13 +69,12 @@
"id": "EU0UubrKzTFe"
},
"source": [
"## HuggingFace - Streaming (Serveless or Dedicated)\n",
"Set stream = True"
"## Streaming\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@ -176,74 +82,147 @@
"id": "y-QfIvA-uJKX",
"outputId": "b007bb98-00d0-44a4-8264-c8a2caed6768"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<litellm.utils.CustomStreamWrapper object at 0x1278471d0>\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content='I', role='assistant', function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=\"'m\", role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' just', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' a', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' computer', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' program', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=',', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' so', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' I', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' don', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=\"'t\", role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' have', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' feelings', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=',', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' but', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' thank', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' you', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' for', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' asking', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content='!', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' How', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' can', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' I', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' assist', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' you', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' today', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content='?', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content='<|eot_id|>', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason='stop', index=0, delta=Delta(content=None, role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n"
]
}
],
"outputs": [],
"source": [
"import os\n",
"import litellm\n",
"from litellm import completion\n",
"\n",
"# Make sure to create an API_KEY with inference permissions at https://huggingface.co/settings/tokens/new?globalPermissions=inference.serverless.write&tokenType=fineGrained\n",
"os.environ[\"HUGGINGFACE_API_KEY\"] = \"\"\n",
"os.environ[\"HF_TOKEN\"] = \"hf_xxxxxx\"\n",
"\n",
"# Call https://huggingface.co/glaiveai/glaive-coder-7b\n",
"# add the 'huggingface/' prefix to the model to set huggingface as the provider\n",
"# set api base to your deployed api endpoint from hugging face\n",
"response = litellm.completion(\n",
" model=\"huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
" messages=[{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}],\n",
" stream=True\n",
"response = completion(\n",
" model=\"huggingface/together/deepseek-ai/DeepSeek-R1\",\n",
" messages=[\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": \"How many r's are in the word `strawberry`?\",\n",
" \n",
" }\n",
" ],\n",
" stream=True,\n",
")\n",
"\n",
"print(response)\n",
"\n",
"for chunk in response:\n",
" print(chunk)"
" print(chunk)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## With images as input\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "CKXAnK55zQRl"
},
"metadata": {},
"outputs": [],
"source": []
"source": [
"from litellm import completion\n",
"\n",
"# Set your Hugging Face Token\n",
"os.environ[\"HF_TOKEN\"] = \"hf_xxxxxx\"\n",
"\n",
"messages = [\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\"type\": \"text\", \"text\": \"What's in this image?\"},\n",
" {\n",
" \"type\": \"image_url\",\n",
" \"image_url\": {\n",
" \"url\": \"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg\",\n",
" },\n",
" },\n",
" ],\n",
" }\n",
"]\n",
"\n",
"response = completion(\n",
" model=\"huggingface/sambanova/meta-llama/Llama-3.3-70B-Instruct\",\n",
" messages=messages,\n",
")\n",
"print(response.choices[0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tools - Function Calling\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from litellm import completion\n",
"\n",
"\n",
"# Set your Hugging Face Token\n",
"os.environ[\"HF_TOKEN\"] = \"hf_xxxxxx\"\n",
"\n",
"tools = [\n",
" {\n",
" \"type\": \"function\",\n",
" \"function\": {\n",
" \"name\": \"get_current_weather\",\n",
" \"description\": \"Get the current weather in a given location\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"location\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city and state, e.g. San Francisco, CA\",\n",
" },\n",
" \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"]},\n",
" },\n",
" \"required\": [\"location\"],\n",
" },\n",
" },\n",
" }\n",
"]\n",
"messages = [{\"role\": \"user\", \"content\": \"What's the weather like in Boston today?\"}]\n",
"\n",
"response = completion(\n",
" model=\"huggingface/sambanova/meta-llama/Llama-3.1-8B-Instruct\", messages=messages, tools=tools, tool_choice=\"auto\"\n",
")\n",
"print(response)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Hugging Face Dedicated Inference Endpoints\n",
"\n",
"Steps to use\n",
"\n",
"- Create your own Hugging Face dedicated endpoint here: https://ui.endpoints.huggingface.co/\n",
"- Set `api_base` to your deployed api base\n",
"- set the model to `huggingface/tgi` so that litellm knows it's a huggingface Deployed Inference Endpoint.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import litellm\n",
"\n",
"\n",
"response = litellm.completion(\n",
" model=\"huggingface/tgi\",\n",
" messages=[{\"content\": \"Hello, how are you?\", \"role\": \"user\"}],\n",
" api_base=\"https://my-endpoint.endpoints.huggingface.cloud/v1/\",\n",
")\n",
"print(response)"
]
}
],
"metadata": {
@ -251,7 +230,8 @@
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
@ -264,7 +244,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
"version": "3.12.0"
}
},
"nbformat": 4,

View file

@ -18,7 +18,7 @@ type: application
# This is the chart version. This version number should be incremented each time you make changes
# to the chart and its templates, including the app version.
# Versions are expected to follow Semantic Versioning (https://semver.org/)
version: 0.4.2
version: 0.4.3
# This is the version number of the application being deployed. This version number should be
# incremented each time you make changes to the application. Versions are not expected to

View file

@ -97,6 +97,9 @@ spec:
value: {{ $val | quote }}
{{- end }}
{{- end }}
{{- with .Values.extraEnvVars }}
{{- toYaml . | nindent 12 }}
{{- end }}
envFrom:
{{- range .Values.environmentSecrets }}
- secretRef:

View file

@ -16,6 +16,7 @@ spec:
{{- toYaml . | nindent 8 }}
{{- end }}
spec:
serviceAccountName: {{ include "litellm.serviceAccountName" . }}
containers:
- name: prisma-migrations
image: "{{ .Values.image.repository }}:{{ .Values.image.tag | default (printf "main-%s" .Chart.AppVersion) }}"

View file

@ -2,6 +2,10 @@ apiVersion: v1
kind: Service
metadata:
name: {{ include "litellm.fullname" . }}
{{- with .Values.service.annotations }}
annotations:
{{- toYaml . | nindent 4 }}
{{- end }}
labels:
{{- include "litellm.labels" . | nindent 4 }}
spec:

View file

@ -80,3 +80,38 @@ tests:
secretKeyRef:
name: my-secret
key: my-key
- it: should work with extraEnvVars
template: deployment.yaml
set:
extraEnvVars:
- name: EXTRA_ENV_VAR
valueFrom:
fieldRef:
fieldPath: metadata.labels['env']
asserts:
- contains:
path: spec.template.spec.containers[0].env
content:
name: EXTRA_ENV_VAR
valueFrom:
fieldRef:
fieldPath: metadata.labels['env']
- it: should work with both extraEnvVars and envVars
template: deployment.yaml
set:
envVars:
ENV_VAR: ENV_VAR_VALUE
extraEnvVars:
- name: EXTRA_ENV_VAR
value: EXTRA_ENV_VAR_VALUE
asserts:
- contains:
path: spec.template.spec.containers[0].env
content:
name: ENV_VAR
value: ENV_VAR_VALUE
- contains:
path: spec.template.spec.containers[0].env
content:
name: EXTRA_ENV_VAR
value: EXTRA_ENV_VAR_VALUE

View file

@ -195,9 +195,15 @@ migrationJob:
annotations: {}
ttlSecondsAfterFinished: 120
# Additional environment variables to be added to the deployment
# Additional environment variables to be added to the deployment as a map of key-value pairs
envVars: {
# USE_DDTRACE: "true"
}
# Additional environment variables to be added to the deployment as a list of k8s env vars
extraEnvVars: {
# - name: EXTRA_ENV_VAR
# value: EXTRA_ENV_VAR_VALUE
}

View file

@ -35,7 +35,7 @@ RUN pip wheel --no-cache-dir --wheel-dir=/wheels/ -r requirements.txt
FROM $LITELLM_RUNTIME_IMAGE AS runtime
# Update dependencies and clean up
RUN apk update && apk upgrade && rm -rf /var/cache/apk/*
RUN apk upgrade --no-cache
WORKDIR /app

View file

@ -12,8 +12,7 @@ WORKDIR /app
USER root
# Install build dependencies
RUN apk update && \
apk add --no-cache gcc python3-dev openssl openssl-dev
RUN apk add --no-cache gcc python3-dev openssl openssl-dev
RUN pip install --upgrade pip && \
@ -44,8 +43,7 @@ FROM $LITELLM_RUNTIME_IMAGE AS runtime
USER root
# Install runtime dependencies
RUN apk update && \
apk add --no-cache openssl
RUN apk add --no-cache openssl
WORKDIR /app
# Copy the current directory contents into the container at /app

View file

@ -109,7 +109,7 @@ client = anthropic.Anthropic(
response = client.messages.create(
messages=[{"role": "user", "content": "Hello, can you tell me a short joke?"}],
model="anthropic/claude-3-haiku-20240307",
model="anthropic-claude",
max_tokens=100,
)
```

View file

@ -3,7 +3,7 @@ import TabItem from '@theme/TabItem';
# Using Audio Models
How to send / receieve audio to a `/chat/completions` endpoint
How to send / receive audio to a `/chat/completions` endpoint
## Audio Output from a model

View file

@ -3,7 +3,7 @@ import TabItem from '@theme/TabItem';
# Using PDF Input
How to send / receieve pdf's (other document types) to a `/chat/completions` endpoint
How to send / receive pdf's (other document types) to a `/chat/completions` endpoint
Works for:
- Vertex AI models (Gemini + Anthropic)
@ -27,16 +27,18 @@ os.environ["AWS_REGION_NAME"] = ""
# pdf url
image_url = "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf"
file_url = "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf"
# model
model = "bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0"
image_content = [
file_content = [
{"type": "text", "text": "What's this file about?"},
{
"type": "image_url",
"image_url": image_url, # OR {"url": image_url}
"type": "file",
"file": {
"file_id": file_url,
}
},
]
@ -46,7 +48,7 @@ if not supports_pdf_input(model, None):
response = completion(
model=model,
messages=[{"role": "user", "content": image_content}],
messages=[{"role": "user", "content": file_content}],
)
assert response is not None
```
@ -83,8 +85,10 @@ curl -X POST 'http://0.0.0.0:4000/chat/completions' \
{"role": "user", "content": [
{"type": "text", "text": "What's this file about?"},
{
"type": "image_url",
"image_url": "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf",
"type": "file",
"file": {
"file_id": "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf",
}
}
]},
]
@ -118,11 +122,13 @@ base64_url = f"data:application/pdf;base64,{encoded_file}"
# model
model = "bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0"
image_content = [
file_content = [
{"type": "text", "text": "What's this file about?"},
{
"type": "image_url",
"image_url": base64_url, # OR {"url": base64_url}
"type": "file",
"file": {
"file_data": base64_url,
}
},
]
@ -132,7 +138,7 @@ if not supports_pdf_input(model, None):
response = completion(
model=model,
messages=[{"role": "user", "content": image_content}],
messages=[{"role": "user", "content": file_content}],
)
assert response is not None
```
@ -169,8 +175,10 @@ curl -X POST 'http://0.0.0.0:4000/chat/completions' \
{"role": "user", "content": [
{"type": "text", "text": "What's this file about?"},
{
"type": "image_url",
"image_url": "data:application/pdf;base64...",
"type": "file",
"file": {
"file_data": "data:application/pdf;base64...",
}
}
]},
]
@ -242,92 +250,3 @@ Expected Response
</TabItem>
</Tabs>
## OpenAI 'file' message type
This is currently only supported for OpenAI models.
This will be supported for all providers soon.
<Tabs>
<TabItem value="sdk" label="SDK">
```python
import base64
from litellm import completion
with open("draconomicon.pdf", "rb") as f:
data = f.read()
base64_string = base64.b64encode(data).decode("utf-8")
completion = completion(
model="gpt-4o",
messages=[
{
"role": "user",
"content": [
{
"type": "file",
"file": {
"filename": "draconomicon.pdf",
"file_data": f"data:application/pdf;base64,{base64_string}",
}
},
{
"type": "text",
"text": "What is the first dragon in the book?",
}
],
},
],
)
print(completion.choices[0].message.content)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: openai-model
litellm_params:
model: gpt-4o
api_key: os.environ/OPENAI_API_KEY
```
2. Start the proxy
```bash
litellm --config config.yaml
```
3. Test it!
```bash
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "openai-model",
"messages": [
{"role": "user", "content": [
{
"type": "file",
"file": {
"filename": "draconomicon.pdf",
"file_data": f"data:application/pdf;base64,{base64_string}",
}
}
]}
]
}'
```
</TabItem>
</Tabs>

View file

@ -194,7 +194,7 @@ Expected Response
## Explicitly specify image type
If you have images without a mime-type, or if litellm is incorrectly inferring the mime type of your image (e.g. calling `gs://` url's with vertex ai), you can set this explicity via the `format` param.
If you have images without a mime-type, or if litellm is incorrectly inferring the mime type of your image (e.g. calling `gs://` url's with vertex ai), you can set this explicitly via the `format` param.
```python
"image_url": {

View file

@ -2,10 +2,12 @@
import TabItem from '@theme/TabItem';
import Tabs from '@theme/Tabs';
# /files
# Provider Files Endpoints
Files are used to upload documents that can be used with features like Assistants, Fine-tuning, and Batch API.
Use this to call the provider's `/files` endpoints directly, in the OpenAI format.
## Quick Start
- Upload a File
@ -19,7 +21,7 @@ Files are used to upload documents that can be used with features like Assistant
<Tabs>
<TabItem value="proxy" label="LiteLLM PROXY Server">
### 1. Setup config.yaml
1. Setup config.yaml
```
# for /files endpoints
@ -32,7 +34,7 @@ files_settings:
api_key: os.environ/OPENAI_API_KEY
```
### 2. Start LiteLLM PROXY Server
2. Start LiteLLM PROXY Server
```bash
litellm --config /path/to/config.yaml
@ -40,7 +42,7 @@ litellm --config /path/to/config.yaml
## RUNNING on http://0.0.0.0:4000
```
### 3. Use OpenAI's /files endpoints
3. Use OpenAI's /files endpoints
Upload a File

View file

@ -20,9 +20,9 @@ print(f"response: {response}")
```yaml
model_list:
- model_name: dall-e-2 ### RECEIVED MODEL NAME ###
- model_name: gpt-image-1 ### RECEIVED MODEL NAME ###
litellm_params: # all params accepted by litellm.image_generation()
model: azure/dall-e-2 ### MODEL NAME sent to `litellm.image_generation()` ###
model: azure/gpt-image-1 ### MODEL NAME sent to `litellm.image_generation()` ###
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key: "os.environ/AZURE_API_KEY_EU" # does os.getenv("AZURE_API_KEY_EU")
rpm: 6 # [OPTIONAL] Rate limit for this deployment: in requests per minute (rpm)
@ -47,7 +47,7 @@ curl -X POST 'http://0.0.0.0:4000/v1/images/generations' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-D '{
"model": "dall-e-2",
"model": "gpt-image-1",
"prompt": "A cute baby sea otter",
"n": 1,
"size": "1024x1024"
@ -104,7 +104,7 @@ Any non-openai params, will be treated as provider-specific params, and sent in
litellm_logging_obj=None,
custom_llm_provider=None,
- `model`: *string (optional)* The model to use for image generation. Defaults to openai/dall-e-2
- `model`: *string (optional)* The model to use for image generation. Defaults to openai/gpt-image-1
- `n`: *int (optional)* The number of images to generate. Must be between 1 and 10. For dall-e-3, only n=1 is supported.
@ -112,7 +112,7 @@ Any non-openai params, will be treated as provider-specific params, and sent in
- `response_format`: *string (optional)* The format in which the generated images are returned. Must be one of url or b64_json.
- `size`: *string (optional)* The size of the generated images. Must be one of 256x256, 512x512, or 1024x1024 for dall-e-2. Must be one of 1024x1024, 1792x1024, or 1024x1792 for dall-e-3 models.
- `size`: *string (optional)* The size of the generated images. Must be one of 256x256, 512x512, or 1024x1024 for gpt-image-1. Must be one of 1024x1024, 1792x1024, or 1024x1792 for dall-e-3 models.
- `timeout`: *integer* - The maximum time, in seconds, to wait for the API to respond. Defaults to 600 seconds (10 minutes).
@ -148,13 +148,14 @@ Any non-openai params, will be treated as provider-specific params, and sent in
from litellm import image_generation
import os
os.environ['OPENAI_API_KEY'] = ""
response = image_generation(model='dall-e-2', prompt="cute baby otter")
response = image_generation(model='gpt-image-1', prompt="cute baby otter")
```
| Model Name | Function Call | Required OS Variables |
|----------------------|---------------------------------------------|--------------------------------------|
| dall-e-2 | `image_generation(model='dall-e-2', prompt="cute baby otter")` | `os.environ['OPENAI_API_KEY']` |
| gpt-image-1 | `image_generation(model='gpt-image-1', prompt="cute baby otter")` | `os.environ['OPENAI_API_KEY']` |
| dall-e-3 | `image_generation(model='dall-e-3', prompt="cute baby otter")` | `os.environ['OPENAI_API_KEY']` |
| dall-e-2 | `image_generation(model='dall-e-2', prompt="cute baby otter")` | `os.environ['OPENAI_API_KEY']` |
## Azure OpenAI Image Generation Models
@ -182,8 +183,9 @@ print(response)
| Model Name | Function Call |
|----------------------|---------------------------------------------|
| dall-e-2 | `image_generation(model="azure/<your deployment name>", prompt="cute baby otter")` |
| gpt-image-1 | `image_generation(model="azure/<your deployment name>", prompt="cute baby otter")` |
| dall-e-3 | `image_generation(model="azure/<your deployment name>", prompt="cute baby otter")` |
| dall-e-2 | `image_generation(model="azure/<your deployment name>", prompt="cute baby otter")` |
## OpenAI Compatible Image Generation Models

View file

@ -0,0 +1,83 @@
# 🖇️ AgentOps - LLM Observability Platform
:::tip
This is community maintained. Please make an issue if you run into a bug:
https://github.com/BerriAI/litellm
:::
[AgentOps](https://docs.agentops.ai) is an observability platform that enables tracing and monitoring of LLM calls, providing detailed insights into your AI operations.
## Using AgentOps with LiteLLM
LiteLLM provides `success_callbacks` and `failure_callbacks`, allowing you to easily integrate AgentOps for comprehensive tracing and monitoring of your LLM operations.
### Integration
Use just a few lines of code to instantly trace your responses **across all providers** with AgentOps:
Get your AgentOps API Keys from https://app.agentops.ai/
```python
import litellm
# Configure LiteLLM to use AgentOps
litellm.success_callback = ["agentops"]
# Make your LLM calls as usual
response = litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello, how are you?"}],
)
```
Complete Code:
```python
import os
from litellm import completion
# Set env variables
os.environ["OPENAI_API_KEY"] = "your-openai-key"
os.environ["AGENTOPS_API_KEY"] = "your-agentops-api-key"
# Configure LiteLLM to use AgentOps
litellm.success_callback = ["agentops"]
# OpenAI call
response = completion(
model="gpt-4",
messages=[{"role": "user", "content": "Hi 👋 - I'm OpenAI"}],
)
print(response)
```
### Configuration Options
The AgentOps integration can be configured through environment variables:
- `AGENTOPS_API_KEY` (str, optional): Your AgentOps API key
- `AGENTOPS_ENVIRONMENT` (str, optional): Deployment environment (defaults to "production")
- `AGENTOPS_SERVICE_NAME` (str, optional): Service name for tracing (defaults to "agentops")
### Advanced Usage
You can configure additional settings through environment variables:
```python
import os
# Configure AgentOps settings
os.environ["AGENTOPS_API_KEY"] = "your-agentops-api-key"
os.environ["AGENTOPS_ENVIRONMENT"] = "staging"
os.environ["AGENTOPS_SERVICE_NAME"] = "my-service"
# Enable AgentOps tracing
litellm.success_callback = ["agentops"]
```
### Support
For issues or questions, please refer to:
- [AgentOps Documentation](https://docs.agentops.ai)
- [LiteLLM Documentation](https://docs.litellm.ai)

View file

@ -53,7 +53,7 @@ response = completion(
## Additional information in metadata
You can send any additional information to Greenscale by using the `metadata` field in completion and `greenscale_` prefix. This can be useful for sending metadata about the request, such as the project and application name, customer_id, enviornment, or any other information you want to track usage. `greenscale_project` and `greenscale_application` are required fields.
You can send any additional information to Greenscale by using the `metadata` field in completion and `greenscale_` prefix. This can be useful for sending metadata about the request, such as the project and application name, customer_id, environment, or any other information you want to track usage. `greenscale_project` and `greenscale_application` are required fields.
```python
#openai call with additional metadata

View file

@ -185,7 +185,7 @@ curl --location --request POST 'http://0.0.0.0:4000/chat/completions' \
* `trace_release` - Release for the trace, defaults to `None`
* `trace_metadata` - Metadata for the trace, defaults to `None`
* `trace_user_id` - User identifier for the trace, defaults to completion argument `user`
* `tags` - Tags for the trace, defeaults to `None`
* `tags` - Tags for the trace, defaults to `None`
##### Updatable Parameters on Continuation

View file

@ -4,7 +4,7 @@ Pass-through endpoints for Cohere - call provider-specific endpoint, in native f
| Feature | Supported | Notes |
|-------|-------|-------|
| Cost Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
| Cost Tracking | ✅ | Supported for `/v1/chat`, and `/v2/chat` |
| Logging | ✅ | works across all integrations |
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
| Streaming | ✅ | |

View file

@ -0,0 +1,217 @@
# Mistral
Pass-through endpoints for Mistral - call provider-specific endpoint, in native format (no translation).
| Feature | Supported | Notes |
|-------|-------|-------|
| Cost Tracking | ❌ | Not supported |
| Logging | ✅ | works across all integrations |
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
| Streaming | ✅ | |
Just replace `https://api.mistral.ai/v1` with `LITELLM_PROXY_BASE_URL/mistral` 🚀
#### **Example Usage**
```bash
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/ocr' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "mistral-ocr-latest",
"document": {
"type": "image_url",
"image_url": "https://raw.githubusercontent.com/mistralai/cookbook/refs/heads/main/mistral/ocr/receipt.png"
}
}'
```
Supports **ALL** Mistral Endpoints (including streaming).
## Quick Start
Let's call the Mistral [`/chat/completions` endpoint](https://docs.mistral.ai/api/#tag/chat/operation/chat_completion_v1_chat_completions_post)
1. Add MISTRAL_API_KEY to your environment
```bash
export MISTRAL_API_KEY="sk-1234"
```
2. Start LiteLLM Proxy
```bash
litellm
# RUNNING on http://0.0.0.0:4000
```
3. Test it!
Let's call the Mistral `/ocr` endpoint
```bash
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/ocr' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "mistral-ocr-latest",
"document": {
"type": "image_url",
"image_url": "https://raw.githubusercontent.com/mistralai/cookbook/refs/heads/main/mistral/ocr/receipt.png"
}
}'
```
## Examples
Anything after `http://0.0.0.0:4000/mistral` is treated as a provider-specific route, and handled accordingly.
Key Changes:
| **Original Endpoint** | **Replace With** |
|------------------------------------------------------|-----------------------------------|
| `https://api.mistral.ai/v1` | `http://0.0.0.0:4000/mistral` (LITELLM_PROXY_BASE_URL="http://0.0.0.0:4000") |
| `bearer $MISTRAL_API_KEY` | `bearer anything` (use `bearer LITELLM_VIRTUAL_KEY` if Virtual Keys are setup on proxy) |
### **Example 1: OCR endpoint**
#### LiteLLM Proxy Call
```bash
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/ocr' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer $LITELLM_API_KEY' \
-d '{
"model": "mistral-ocr-latest",
"document": {
"type": "image_url",
"image_url": "https://raw.githubusercontent.com/mistralai/cookbook/refs/heads/main/mistral/ocr/receipt.png"
}
}'
```
#### Direct Mistral API Call
```bash
curl https://api.mistral.ai/v1/ocr \
-H "Content-Type: application/json" \
-H "Authorization: Bearer ${MISTRAL_API_KEY}" \
-d '{
"model": "mistral-ocr-latest",
"document": {
"type": "document_url",
"document_url": "https://arxiv.org/pdf/2201.04234"
},
"include_image_base64": true
}'
```
### **Example 2: Chat API**
#### LiteLLM Proxy Call
```bash
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
-d '{
"messages": [
{
"role": "user",
"content": "I am going to Paris, what should I see?"
}
],
"max_tokens": 2048,
"temperature": 0.8,
"top_p": 0.1,
"model": "mistral-large-latest",
}'
```
#### Direct Mistral API Call
```bash
curl -L -X POST 'https://api.mistral.ai/v1/chat/completions' \
-H 'Content-Type: application/json' \
-d '{
"messages": [
{
"role": "user",
"content": "I am going to Paris, what should I see?"
}
],
"max_tokens": 2048,
"temperature": 0.8,
"top_p": 0.1,
"model": "mistral-large-latest",
}'
```
## Advanced - Use with Virtual Keys
Pre-requisites
- [Setup proxy with DB](../proxy/virtual_keys.md#setup)
Use this, to avoid giving developers the raw Mistral API key, but still letting them use Mistral endpoints.
### Usage
1. Setup environment
```bash
export DATABASE_URL=""
export LITELLM_MASTER_KEY=""
export MISTRAL_API_BASE=""
```
```bash
litellm
# RUNNING on http://0.0.0.0:4000
```
2. Generate virtual key
```bash
curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{}'
```
Expected Response
```bash
{
...
"key": "sk-1234ewknldferwedojwojw"
}
```
3. Test it!
```bash
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234ewknldferwedojwojw' \
--data '{
"messages": [
{
"role": "user",
"content": "I am going to Paris, what should I see?"
}
],
"max_tokens": 2048,
"temperature": 0.8,
"top_p": 0.1,
"model": "qwen2.5-7b-instruct",
}'
```

View file

@ -13,6 +13,15 @@ Pass-through endpoints for Vertex AI - call provider-specific endpoint, in nativ
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
| Streaming | ✅ | |
## Supported Endpoints
LiteLLM supports 2 vertex ai passthrough routes:
1. `/vertex_ai` → routes to `https://{vertex_location}-aiplatform.googleapis.com/`
2. `/vertex_ai/discovery` → routes to [`https://discoveryengine.googleapis.com`](https://discoveryengine.googleapis.com/)
## How to use
Just replace `https://REGION-aiplatform.googleapis.com` with `LITELLM_PROXY_BASE_URL/vertex_ai`
LiteLLM supports 3 flows for calling Vertex AI endpoints via pass-through:
@ -213,7 +222,7 @@ curl http://localhost:4000/vertex-ai/v1/projects/${PROJECT_ID}/locations/us-cent
LiteLLM Proxy Server supports two methods of authentication to Vertex AI:
1. Pass Vertex Credetials client side to proxy server
1. Pass Vertex Credentials client side to proxy server
2. Set Vertex AI credentials on proxy server

View file

@ -0,0 +1,185 @@
# VLLM
Pass-through endpoints for VLLM - call provider-specific endpoint, in native format (no translation).
| Feature | Supported | Notes |
|-------|-------|-------|
| Cost Tracking | ❌ | Not supported |
| Logging | ✅ | works across all integrations |
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
| Streaming | ✅ | |
Just replace `https://my-vllm-server.com` with `LITELLM_PROXY_BASE_URL/vllm` 🚀
#### **Example Usage**
```bash
curl -L -X GET 'http://0.0.0.0:4000/vllm/metrics' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
```
Supports **ALL** VLLM Endpoints (including streaming).
## Quick Start
Let's call the VLLM [`/metrics` endpoint](https://vllm.readthedocs.io/en/latest/api_reference/api_reference.html)
1. Add HOSTED VLLM API BASE to your environment
```bash
export HOSTED_VLLM_API_BASE="https://my-vllm-server.com"
```
2. Start LiteLLM Proxy
```bash
litellm
# RUNNING on http://0.0.0.0:4000
```
3. Test it!
Let's call the VLLM `/metrics` endpoint
```bash
curl -L -X GET 'http://0.0.0.0:4000/vllm/metrics' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
```
## Examples
Anything after `http://0.0.0.0:4000/vllm` is treated as a provider-specific route, and handled accordingly.
Key Changes:
| **Original Endpoint** | **Replace With** |
|------------------------------------------------------|-----------------------------------|
| `https://my-vllm-server.com` | `http://0.0.0.0:4000/vllm` (LITELLM_PROXY_BASE_URL="http://0.0.0.0:4000") |
| `bearer $VLLM_API_KEY` | `bearer anything` (use `bearer LITELLM_VIRTUAL_KEY` if Virtual Keys are setup on proxy) |
### **Example 1: Metrics endpoint**
#### LiteLLM Proxy Call
```bash
curl -L -X GET 'http://0.0.0.0:4000/vllm/metrics' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
```
#### Direct VLLM API Call
```bash
curl -L -X GET 'https://my-vllm-server.com/metrics' \
-H 'Content-Type: application/json' \
```
### **Example 2: Chat API**
#### LiteLLM Proxy Call
```bash
curl -L -X POST 'http://0.0.0.0:4000/vllm/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
-d '{
"messages": [
{
"role": "user",
"content": "I am going to Paris, what should I see?"
}
],
"max_tokens": 2048,
"temperature": 0.8,
"top_p": 0.1,
"model": "qwen2.5-7b-instruct",
}'
```
#### Direct VLLM API Call
```bash
curl -L -X POST 'https://my-vllm-server.com/chat/completions' \
-H 'Content-Type: application/json' \
-d '{
"messages": [
{
"role": "user",
"content": "I am going to Paris, what should I see?"
}
],
"max_tokens": 2048,
"temperature": 0.8,
"top_p": 0.1,
"model": "qwen2.5-7b-instruct",
}'
```
## Advanced - Use with Virtual Keys
Pre-requisites
- [Setup proxy with DB](../proxy/virtual_keys.md#setup)
Use this, to avoid giving developers the raw Cohere API key, but still letting them use Cohere endpoints.
### Usage
1. Setup environment
```bash
export DATABASE_URL=""
export LITELLM_MASTER_KEY=""
export HOSTED_VLLM_API_BASE=""
```
```bash
litellm
# RUNNING on http://0.0.0.0:4000
```
2. Generate virtual key
```bash
curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{}'
```
Expected Response
```bash
{
...
"key": "sk-1234ewknldferwedojwojw"
}
```
3. Test it!
```bash
curl -L -X POST 'http://0.0.0.0:4000/vllm/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234ewknldferwedojwojw' \
--data '{
"messages": [
{
"role": "user",
"content": "I am going to Paris, what should I see?"
}
],
"max_tokens": 2048,
"temperature": 0.8,
"top_p": 0.1,
"model": "qwen2.5-7b-instruct",
}'
```

View file

@ -1095,7 +1095,7 @@ response = completion(
print(response.choices[0])
```
</TabItem>
<TabItem value="proxy" lable="PROXY">
<TabItem value="proxy" label="PROXY">
1. Add model to config

View file

@ -478,12 +478,12 @@ response.stream_to_file(speech_file_path)
## **Authentication**
### Entrata ID - use `azure_ad_token`
### Entra ID - use `azure_ad_token`
This is a walkthrough on how to use Azure Active Directory Tokens - Microsoft Entra ID to make `litellm.completion()` calls
Step 1 - Download Azure CLI
Installation instructons: https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
Installation instructions: https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
```shell
brew update && brew install azure-cli
```
@ -545,7 +545,7 @@ model_list:
</TabItem>
</Tabs>
### Entrata ID - use tenant_id, client_id, client_secret
### Entra ID - use tenant_id, client_id, client_secret
Here is an example of setting up `tenant_id`, `client_id`, `client_secret` in your litellm proxy `config.yaml`
```yaml
@ -581,7 +581,7 @@ Example video of using `tenant_id`, `client_id`, `client_secret` with LiteLLM Pr
<iframe width="840" height="500" src="https://www.loom.com/embed/70d3f219ee7f4e5d84778b7f17bba506?sid=04b8ff29-485f-4cb8-929e-6b392722f36d" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe>
### Entrata ID - use client_id, username, password
### Entra ID - use client_id, username, password
Here is an example of setting up `client_id`, `azure_username`, `azure_password` in your litellm proxy `config.yaml`
```yaml
@ -1002,8 +1002,125 @@ Expected Response:
```
## **Azure Responses API**
| Property | Details |
|-------|-------|
| Description | Azure OpenAI Responses API |
| `custom_llm_provider` on LiteLLM | `azure/` |
| Supported Operations | `/v1/responses`|
| Azure OpenAI Responses API | [Azure OpenAI Responses API ↗](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/responses?tabs=python-secure) |
| Cost Tracking, Logging Support | ✅ LiteLLM will log, track cost for Responses API Requests |
| Supported OpenAI Params | ✅ All OpenAI params are supported, [See here](https://github.com/BerriAI/litellm/blob/0717369ae6969882d149933da48eeb8ab0e691bd/litellm/llms/openai/responses/transformation.py#L23) |
## Usage
## Create a model response
<Tabs>
<TabItem value="litellm-sdk" label="LiteLLM SDK">
#### Non-streaming
```python showLineNumbers title="Azure Responses API"
import litellm
# Non-streaming response
response = litellm.responses(
model="azure/o1-pro",
input="Tell me a three sentence bedtime story about a unicorn.",
max_output_tokens=100,
api_key=os.getenv("AZURE_RESPONSES_OPENAI_API_KEY"),
api_base="https://litellm8397336933.openai.azure.com/",
api_version="2023-03-15-preview",
)
print(response)
```
#### Streaming
```python showLineNumbers title="Azure Responses API"
import litellm
# Streaming response
response = litellm.responses(
model="azure/o1-pro",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True,
api_key=os.getenv("AZURE_RESPONSES_OPENAI_API_KEY"),
api_base="https://litellm8397336933.openai.azure.com/",
api_version="2023-03-15-preview",
)
for event in response:
print(event)
```
</TabItem>
<TabItem value="proxy" label="OpenAI SDK with LiteLLM Proxy">
First, add this to your litellm proxy config.yaml:
```yaml showLineNumbers title="Azure Responses API"
model_list:
- model_name: o1-pro
litellm_params:
model: azure/o1-pro
api_key: os.environ/AZURE_RESPONSES_OPENAI_API_KEY
api_base: https://litellm8397336933.openai.azure.com/
api_version: 2023-03-15-preview
```
Start your LiteLLM proxy:
```bash
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
Then use the OpenAI SDK pointed to your proxy:
#### Non-streaming
```python showLineNumbers
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Non-streaming response
response = client.responses.create(
model="o1-pro",
input="Tell me a three sentence bedtime story about a unicorn."
)
print(response)
```
#### Streaming
```python showLineNumbers
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Streaming response
response = client.responses.create(
model="o1-pro",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
</Tabs>
@ -1076,32 +1193,24 @@ print(response)
```
### Parallel Function calling
### Tool Calling / Function Calling
See a detailed walthrough of parallel function calling with litellm [here](https://docs.litellm.ai/docs/completion/function_call)
<Tabs>
<TabItem value="sdk" label="SDK">
```python
# set Azure env variables
import os
import litellm
import json
os.environ['AZURE_API_KEY'] = "" # litellm reads AZURE_API_KEY from .env and sends the request
os.environ['AZURE_API_BASE'] = "https://openai-gpt-4-test-v-1.openai.azure.com/"
os.environ['AZURE_API_VERSION'] = "2023-07-01-preview"
import litellm
import json
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})
## Step 1: send the conversation and available functions to the model
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
@ -1125,7 +1234,7 @@ tools = [
response = litellm.completion(
model="azure/chatgpt-functioncalling", # model = azure/<your-azure-deployment-name>
messages=messages,
messages=[{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}],
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
@ -1134,8 +1243,49 @@ response_message = response.choices[0].message
tool_calls = response.choices[0].message.tool_calls
print("\nTool Choice:\n", tool_calls)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: azure-gpt-3.5
litellm_params:
model: azure/chatgpt-functioncalling
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: "2023-07-01-preview"
```
2. Start proxy
```bash
litellm --config config.yaml
```
3. Test it
```bash
curl -L -X POST 'http://localhost:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "azure-gpt-3.5",
"messages": [
{
"role": "user",
"content": "Hey, how'\''s it going? Thinking long and hard before replying - what is the meaning of the world and life itself"
}
]
}'
```
</TabItem>
</Tabs>
### Spend Tracking for Azure OpenAI Models (PROXY)
Set base model for cost tracking azure image-gen call

View file

@ -1,7 +1,7 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# 🆕 Databricks
# Databricks
LiteLLM supports all models on Databricks
@ -154,7 +154,205 @@ response = completion(
temperature: 0.5
```
## Passings Databricks specific params - 'instruction'
## Usage - Thinking / `reasoning_content`
LiteLLM translates OpenAI's `reasoning_effort` to Anthropic's `thinking` parameter. [Code](https://github.com/BerriAI/litellm/blob/23051d89dd3611a81617d84277059cd88b2df511/litellm/llms/anthropic/chat/transformation.py#L298)
| reasoning_effort | thinking |
| ---------------- | -------- |
| "low" | "budget_tokens": 1024 |
| "medium" | "budget_tokens": 2048 |
| "high" | "budget_tokens": 4096 |
Known Limitations:
- Support for passing thinking blocks back to Claude [Issue](https://github.com/BerriAI/litellm/issues/9790)
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
import os
# set ENV variables (can also be passed in to .completion() - e.g. `api_base`, `api_key`)
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks base url"
resp = completion(
model="databricks/databricks-claude-3-7-sonnet",
messages=[{"role": "user", "content": "What is the capital of France?"}],
reasoning_effort="low",
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
- model_name: claude-3-7-sonnet
litellm_params:
model: databricks/databricks-claude-3-7-sonnet
api_key: os.environ/DATABRICKS_API_KEY
api_base: os.environ/DATABRICKS_API_BASE
```
2. Start proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
-d '{
"model": "claude-3-7-sonnet",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"reasoning_effort": "low"
}'
```
</TabItem>
</Tabs>
**Expected Response**
```python
ModelResponse(
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
created=1740470510,
model='claude-3-7-sonnet-20250219',
object='chat.completion',
system_fingerprint=None,
choices=[
Choices(
finish_reason='stop',
index=0,
message=Message(
content="The capital of France is Paris.",
role='assistant',
tool_calls=None,
function_call=None,
provider_specific_fields={
'citations': None,
'thinking_blocks': [
{
'type': 'thinking',
'thinking': 'The capital of France is Paris. This is a very straightforward factual question.',
'signature': 'EuYBCkQYAiJAy6...'
}
]
}
),
thinking_blocks=[
{
'type': 'thinking',
'thinking': 'The capital of France is Paris. This is a very straightforward factual question.',
'signature': 'EuYBCkQYAiJAy6AGB...'
}
],
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
)
],
usage=Usage(
completion_tokens=68,
prompt_tokens=42,
total_tokens=110,
completion_tokens_details=None,
prompt_tokens_details=PromptTokensDetailsWrapper(
audio_tokens=None,
cached_tokens=0,
text_tokens=None,
image_tokens=None
),
cache_creation_input_tokens=0,
cache_read_input_tokens=0
)
)
```
### Pass `thinking` to Anthropic models
You can also pass the `thinking` parameter to Anthropic models.
You can also pass the `thinking` parameter to Anthropic models.
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
import os
# set ENV variables (can also be passed in to .completion() - e.g. `api_base`, `api_key`)
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks base url"
response = litellm.completion(
model="databricks/databricks-claude-3-7-sonnet",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_KEY" \
-d '{
"model": "databricks/databricks-claude-3-7-sonnet",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"thinking": {"type": "enabled", "budget_tokens": 1024}
}'
```
</TabItem>
</Tabs>
## Supported Databricks Chat Completion Models
:::tip
**We support ALL Databricks models, just set `model=databricks/<any-model-on-databricks>` as a prefix when sending litellm requests**
:::
| Model Name | Command |
|----------------------------|------------------------------------------------------------------|
| databricks/databricks-claude-3-7-sonnet | `completion(model='databricks/databricks/databricks-claude-3-7-sonnet', messages=messages)` |
| databricks-meta-llama-3-1-70b-instruct | `completion(model='databricks/databricks-meta-llama-3-1-70b-instruct', messages=messages)` |
| databricks-meta-llama-3-1-405b-instruct | `completion(model='databricks/databricks-meta-llama-3-1-405b-instruct', messages=messages)` |
| databricks-dbrx-instruct | `completion(model='databricks/databricks-dbrx-instruct', messages=messages)` |
| databricks-meta-llama-3-70b-instruct | `completion(model='databricks/databricks-meta-llama-3-70b-instruct', messages=messages)` |
| databricks-llama-2-70b-chat | `completion(model='databricks/databricks-llama-2-70b-chat', messages=messages)` |
| databricks-mixtral-8x7b-instruct | `completion(model='databricks/databricks-mixtral-8x7b-instruct', messages=messages)` |
| databricks-mpt-30b-instruct | `completion(model='databricks/databricks-mpt-30b-instruct', messages=messages)` |
| databricks-mpt-7b-instruct | `completion(model='databricks/databricks-mpt-7b-instruct', messages=messages)` |
## Embedding Models
### Passing Databricks specific params - 'instruction'
For embedding models, databricks lets you pass in an additional param 'instruction'. [Full Spec](https://github.com/BerriAI/litellm/blob/43353c28b341df0d9992b45c6ce464222ebd7984/litellm/llms/databricks.py#L164)
@ -187,27 +385,6 @@ response = litellm.embedding(
instruction: "Represent this sentence for searching relevant passages:"
```
## Supported Databricks Chat Completion Models
:::tip
**We support ALL Databricks models, just set `model=databricks/<any-model-on-databricks>` as a prefix when sending litellm requests**
:::
| Model Name | Command |
|----------------------------|------------------------------------------------------------------|
| databricks-meta-llama-3-1-70b-instruct | `completion(model='databricks/databricks-meta-llama-3-1-70b-instruct', messages=messages)` |
| databricks-meta-llama-3-1-405b-instruct | `completion(model='databricks/databricks-meta-llama-3-1-405b-instruct', messages=messages)` |
| databricks-dbrx-instruct | `completion(model='databricks/databricks-dbrx-instruct', messages=messages)` |
| databricks-meta-llama-3-70b-instruct | `completion(model='databricks/databricks-meta-llama-3-70b-instruct', messages=messages)` |
| databricks-llama-2-70b-chat | `completion(model='databricks/databricks-llama-2-70b-chat', messages=messages)` |
| databricks-mixtral-8x7b-instruct | `completion(model='databricks/databricks-mixtral-8x7b-instruct', messages=messages)` |
| databricks-mpt-30b-instruct | `completion(model='databricks/databricks-mpt-30b-instruct', messages=messages)` |
| databricks-mpt-7b-instruct | `completion(model='databricks/databricks-mpt-7b-instruct', messages=messages)` |
## Supported Databricks Embedding Models
:::tip

View file

@ -39,14 +39,164 @@ response = completion(
- temperature
- top_p
- max_tokens
- max_completion_tokens
- stream
- tools
- tool_choice
- functions
- response_format
- n
- stop
- logprobs
- frequency_penalty
- modalities
- reasoning_content
**Anthropic Params**
- thinking (used to set max budget tokens across anthropic/gemini models)
[**See Updated List**](https://github.com/BerriAI/litellm/blob/main/litellm/llms/gemini/chat/transformation.py#L70)
## Usage - Thinking / `reasoning_content`
LiteLLM translates OpenAI's `reasoning_effort` to Gemini's `thinking` parameter. [Code](https://github.com/BerriAI/litellm/blob/620664921902d7a9bfb29897a7b27c1a7ef4ddfb/litellm/llms/vertex_ai/gemini/vertex_and_google_ai_studio_gemini.py#L362)
**Mapping**
| reasoning_effort | thinking |
| ---------------- | -------- |
| "low" | "budget_tokens": 1024 |
| "medium" | "budget_tokens": 2048 |
| "high" | "budget_tokens": 4096 |
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
resp = completion(
model="gemini/gemini-2.5-flash-preview-04-17",
messages=[{"role": "user", "content": "What is the capital of France?"}],
reasoning_effort="low",
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
- model_name: gemini-2.5-flash
litellm_params:
model: gemini/gemini-2.5-flash-preview-04-17
api_key: os.environ/GEMINI_API_KEY
```
2. Start proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
-d '{
"model": "gemini-2.5-flash",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"reasoning_effort": "low"
}'
```
</TabItem>
</Tabs>
**Expected Response**
```python
ModelResponse(
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
created=1740470510,
model='claude-3-7-sonnet-20250219',
object='chat.completion',
system_fingerprint=None,
choices=[
Choices(
finish_reason='stop',
index=0,
message=Message(
content="The capital of France is Paris.",
role='assistant',
tool_calls=None,
function_call=None,
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
),
)
],
usage=Usage(
completion_tokens=68,
prompt_tokens=42,
total_tokens=110,
completion_tokens_details=None,
prompt_tokens_details=PromptTokensDetailsWrapper(
audio_tokens=None,
cached_tokens=0,
text_tokens=None,
image_tokens=None
),
cache_creation_input_tokens=0,
cache_read_input_tokens=0
)
)
```
### Pass `thinking` to Gemini models
You can also pass the `thinking` parameter to Gemini models.
This is translated to Gemini's [`thinkingConfig` parameter](https://ai.google.dev/gemini-api/docs/thinking#set-budget).
<Tabs>
<TabItem value="sdk" label="SDK">
```python
response = litellm.completion(
model="gemini/gemini-2.5-flash-preview-04-17",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_KEY" \
-d '{
"model": "gemini/gemini-2.5-flash-preview-04-17",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"thinking": {"type": "enabled", "budget_tokens": 1024}
}'
```
</TabItem>
</Tabs>
[**See Updated List**](https://github.com/BerriAI/litellm/blob/1c747f3ad372399c5b95cc5696b06a5fbe53186b/litellm/llms/vertex_httpx.py#L122)
## Passing Gemini Specific Params
### Response schema
@ -438,6 +588,179 @@ assert isinstance(
```
### Google Search Tool
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
import os
os.environ["GEMINI_API_KEY"] = ".."
tools = [{"googleSearch": {}}] # 👈 ADD GOOGLE SEARCH
response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
tools=tools,
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: gemini-2.0-flash
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
```
2. Start Proxy
```bash
$ litellm --config /path/to/config.yaml
```
3. Make Request!
```bash
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-2.0-flash",
"messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
"tools": [{"googleSearch": {}}]
}
'
```
</TabItem>
</Tabs>
### Google Search Retrieval
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
import os
os.environ["GEMINI_API_KEY"] = ".."
tools = [{"googleSearch": {}}] # 👈 ADD GOOGLE SEARCH
response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
tools=tools,
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: gemini-2.0-flash
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
```
2. Start Proxy
```bash
$ litellm --config /path/to/config.yaml
```
3. Make Request!
```bash
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-2.0-flash",
"messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
"tools": [{"googleSearch": {}}]
}
'
```
</TabItem>
</Tabs>
### Code Execution Tool
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
import os
os.environ["GEMINI_API_KEY"] = ".."
tools = [{"codeExecution": {}}] # 👈 ADD GOOGLE SEARCH
response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
tools=tools,
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: gemini-2.0-flash
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
```
2. Start Proxy
```bash
$ litellm --config /path/to/config.yaml
```
3. Make Request!
```bash
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-2.0-flash",
"messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
"tools": [{"codeExecution": {}}]
}
'
```
</TabItem>
</Tabs>
## JSON Mode
<Tabs>
@ -887,3 +1210,54 @@ response = await client.chat.completions.create(
</TabItem>
</Tabs>
## Image Generation
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
response = completion(
model="gemini/gemini-2.0-flash-exp-image-generation",
messages=[{"role": "user", "content": "Generate an image of a cat"}],
modalities=["image", "text"],
)
assert response.choices[0].message.content is not None # ".."
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: gemini-2.0-flash-exp-image-generation
litellm_params:
model: gemini/gemini-2.0-flash-exp-image-generation
api_key: os.environ/GEMINI_API_KEY
```
2. Start proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
```bash
curl -L -X POST 'http://localhost:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-2.0-flash-exp-image-generation",
"messages": [{"role": "user", "content": "Generate an image of a cat"}],
"modalities": ["image", "text"]
}'
```
</TabItem>
</Tabs>

View file

@ -0,0 +1,161 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# [BETA] Google AI Studio (Gemini) Files API
Use this to upload files to Google AI Studio (Gemini).
Useful to pass in large media files to Gemini's `/generateContent` endpoint.
| Action | Supported |
|----------|-----------|
| `create` | Yes |
| `delete` | No |
| `retrieve` | No |
| `list` | No |
## Usage
<Tabs>
<TabItem value="sdk" label="SDK">
```python
import base64
import requests
from litellm import completion, create_file
import os
### UPLOAD FILE ###
# Fetch the audio file and convert it to a base64 encoded string
url = "https://cdn.openai.com/API/docs/audio/alloy.wav"
response = requests.get(url)
response.raise_for_status()
wav_data = response.content
encoded_string = base64.b64encode(wav_data).decode('utf-8')
file = create_file(
file=wav_data,
purpose="user_data",
extra_body={"custom_llm_provider": "gemini"},
api_key=os.getenv("GEMINI_API_KEY"),
)
print(f"file: {file}")
assert file is not None
### GENERATE CONTENT ###
completion = completion(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this recording?"
},
{
"type": "file",
"file": {
"file_id": file.id,
"filename": "my-test-name",
"format": "audio/wav"
}
}
]
},
]
)
print(completion.choices[0].message)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: "gemini-2.0-flash"
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
```
2. Start proxy
```bash
litellm --config config.yaml
```
3. Test it
```python
import base64
import requests
from openai import OpenAI
client = OpenAI(
base_url="http://0.0.0.0:4000",
api_key="sk-1234"
)
# Fetch the audio file and convert it to a base64 encoded string
url = "https://cdn.openai.com/API/docs/audio/alloy.wav"
response = requests.get(url)
response.raise_for_status()
wav_data = response.content
encoded_string = base64.b64encode(wav_data).decode('utf-8')
file = client.files.create(
file=wav_data,
purpose="user_data",
extra_body={"target_model_names": "gemini-2.0-flash"}
)
print(f"file: {file}")
assert file is not None
completion = client.chat.completions.create(
model="gemini-2.0-flash",
modalities=["text", "audio"],
audio={"voice": "alloy", "format": "wav"},
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this recording?"
},
{
"type": "file",
"file": {
"file_id": file.id,
"filename": "my-test-name",
"format": "audio/wav"
}
}
]
},
],
extra_body={"drop_params": True}
)
print(completion.choices[0].message)
```
</TabItem>
</Tabs>

View file

@ -2,466 +2,392 @@ import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Huggingface
# Hugging Face
LiteLLM supports running inference across multiple services for models hosted on the Hugging Face Hub.
LiteLLM supports the following types of Hugging Face models:
- **Serverless Inference Providers** - Hugging Face offers an easy and unified access to serverless AI inference through multiple inference providers, like [Together AI](https://together.ai) and [Sambanova](https://sambanova.ai). This is the fastest way to integrate AI in your products with a maintenance-free and scalable solution. More details in the [Inference Providers documentation](https://huggingface.co/docs/inference-providers/index).
- **Dedicated Inference Endpoints** - which is a product to easily deploy models to production. Inference is run by Hugging Face in a dedicated, fully managed infrastructure on a cloud provider of your choice. You can deploy your model on Hugging Face Inference Endpoints by following [these steps](https://huggingface.co/docs/inference-endpoints/guides/create_endpoint).
- Serverless Inference API (free) - loaded and ready to use: https://huggingface.co/models?inference=warm&pipeline_tag=text-generation
- Dedicated Inference Endpoints (paid) - manual deployment: https://ui.endpoints.huggingface.co/
- All LLMs served via Hugging Face's Inference use [Text-generation-inference](https://huggingface.co/docs/text-generation-inference).
## Supported Models
### Serverless Inference Providers
You can check available models for an inference provider by going to [huggingface.co/models](https://huggingface.co/models), clicking the "Other" filter tab, and selecting your desired provider:
![Filter models by Inference Provider](../../img/hf_filter_inference_providers.png)
For example, you can find all Fireworks supported models [here](https://huggingface.co/models?inference_provider=fireworks-ai&sort=trending).
### Dedicated Inference Endpoints
Refer to the [Inference Endpoints catalog](https://endpoints.huggingface.co/catalog) for a list of available models.
## Usage
<Tabs>
<TabItem value="serverless" label="Serverless Inference Providers">
### Authentication
With a single Hugging Face token, you can access inference through multiple providers. Your calls are routed through Hugging Face and the usage is billed directly to your Hugging Face account at the standard provider API rates.
Simply set the `HF_TOKEN` environment variable with your Hugging Face token, you can create one here: https://huggingface.co/settings/tokens.
```bash
export HF_TOKEN="hf_xxxxxx"
```
or alternatively, you can pass your Hugging Face token as a parameter:
```python
completion(..., api_key="hf_xxxxxx")
```
### Getting Started
To use a Hugging Face model, specify both the provider and model you want to use in the following format:
```
huggingface/<provider>/<hf_org_or_user>/<hf_model>
```
Where `<hf_org_or_user>/<hf_model>` is the Hugging Face model ID and `<provider>` is the inference provider.
By default, if you don't specify a provider, LiteLLM will use the [HF Inference API](https://huggingface.co/docs/api-inference/en/index).
Examples:
```python
# Run DeepSeek-R1 inference through Together AI
completion(model="huggingface/together/deepseek-ai/DeepSeek-R1",...)
# Run Qwen2.5-72B-Instruct inference through Sambanova
completion(model="huggingface/sambanova/Qwen/Qwen2.5-72B-Instruct",...)
# Run Llama-3.3-70B-Instruct inference through HF Inference API
completion(model="huggingface/meta-llama/Llama-3.3-70B-Instruct",...)
```
<a target="_blank" href="https://colab.research.google.com/github/BerriAI/litellm/blob/main/cookbook/LiteLLM_HuggingFace.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
You need to tell LiteLLM when you're calling Huggingface.
This is done by adding the "huggingface/" prefix to `model`, example `completion(model="huggingface/<model_name>",...)`.
<Tabs>
<TabItem value="serverless" label="Serverless Inference API">
By default, LiteLLM will assume a Hugging Face call follows the [Messages API](https://huggingface.co/docs/text-generation-inference/messages_api), which is fully compatible with the OpenAI Chat Completion API.
<Tabs>
<TabItem value="sdk" label="SDK">
### Basic Completion
Here's an example of chat completion using the DeepSeek-R1 model through Together AI:
```python
import os
from litellm import completion
# [OPTIONAL] set env var
os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key"
os.environ["HF_TOKEN"] = "hf_xxxxxx"
messages = [{ "content": "There's a llama in my garden 😱 What should I do?","role": "user"}]
# e.g. Call 'https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct' from Serverless Inference API
response = completion(
model="huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct",
messages=[{ "content": "Hello, how are you?","role": "user"}],
model="huggingface/together/deepseek-ai/DeepSeek-R1",
messages=[
{
"role": "user",
"content": "How many r's are in the word 'strawberry'?",
}
],
)
print(response)
```
### Streaming
Now, let's see what a streaming request looks like.
```python
import os
from litellm import completion
os.environ["HF_TOKEN"] = "hf_xxxxxx"
response = completion(
model="huggingface/together/deepseek-ai/DeepSeek-R1",
messages=[
{
"role": "user",
"content": "How many r's are in the word `strawberry`?",
}
],
stream=True,
)
for chunk in response:
print(chunk)
```
### Image Input
You can also pass images when the model supports it. Here is an example using [Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) model through Sambanova.
```python
from litellm import completion
# Set your Hugging Face Token
os.environ["HF_TOKEN"] = "hf_xxxxxx"
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
}
},
],
}
]
response = completion(
model="huggingface/sambanova/meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
)
print(response.choices[0])
```
### Function Calling
You can extend the model's capabilities by giving them access to tools. Here is an example with function calling using [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) model through Sambanova.
```python
import os
from litellm import completion
# Set your Hugging Face Token
os.environ["HF_TOKEN"] = "hf_xxxxxx"
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
]
messages = [
{
"role": "user",
"content": "What's the weather like in Boston today?",
}
]
response = completion(
model="huggingface/sambanova/meta-llama/Llama-3.3-70B-Instruct",
messages=messages,
tools=tools,
tool_choice="auto"
)
print(response)
```
</TabItem>
<TabItem value="endpoints" label="Inference Endpoints">
<a target="_blank" href="https://colab.research.google.com/github/BerriAI/litellm/blob/main/cookbook/LiteLLM_HuggingFace.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
### Basic Completion
After you have [deployed your Hugging Face Inference Endpoint](https://endpoints.huggingface.co/new) on dedicated infrastructure, you can run inference on it by providing the endpoint base URL in `api_base`, and indicating `huggingface/tgi` as the model name.
```python
import os
from litellm import completion
os.environ["HF_TOKEN"] = "hf_xxxxxx"
response = completion(
model="huggingface/tgi",
messages=[{"content": "Hello, how are you?", "role": "user"}],
api_base="https://my-endpoint.endpoints.huggingface.cloud/v1/"
)
print(response)
```
### Streaming
```python
import os
from litellm import completion
os.environ["HF_TOKEN"] = "hf_xxxxxx"
response = completion(
model="huggingface/tgi",
messages=[{"content": "Hello, how are you?", "role": "user"}],
api_base="https://my-endpoint.endpoints.huggingface.cloud/v1/",
stream=True
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Add models to your config.yaml
```yaml
model_list:
- model_name: llama-3.1-8B-instruct
litellm_params:
model: huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct
api_key: os.environ/HUGGINGFACE_API_KEY
```
2. Start the proxy
```bash
$ litellm --config /path/to/config.yaml --debug
```
3. Test it!
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "llama-3.1-8B-instruct",
"messages": [
{
"role": "user",
"content": "I like you!"
}
],
}'
```
</TabItem>
</Tabs>
</TabItem>
<TabItem value="classification" label="Text Classification">
Append `text-classification` to the model name
e.g. `huggingface/text-classification/<model-name>`
<Tabs>
<TabItem value="sdk" label="SDK">
```python
import os
from litellm import completion
# [OPTIONAL] set env var
os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key"
messages = [{ "content": "I like you, I love you!","role": "user"}]
# e.g. Call 'shahrukhx01/question-vs-statement-classifier' hosted on HF Inference endpoints
response = completion(
model="huggingface/text-classification/shahrukhx01/question-vs-statement-classifier",
messages=messages,
api_base="https://my-endpoint.endpoints.huggingface.cloud",
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Add models to your config.yaml
```yaml
model_list:
- model_name: bert-classifier
litellm_params:
model: huggingface/text-classification/shahrukhx01/question-vs-statement-classifier
api_key: os.environ/HUGGINGFACE_API_KEY
api_base: "https://my-endpoint.endpoints.huggingface.cloud"
```
2. Start the proxy
```bash
$ litellm --config /path/to/config.yaml --debug
```
3. Test it!
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "bert-classifier",
"messages": [
{
"role": "user",
"content": "I like you!"
}
],
}'
```
</TabItem>
</Tabs>
</TabItem>
<TabItem value="dedicated" label="Dedicated Inference Endpoints">
Steps to use
* Create your own Hugging Face dedicated endpoint here: https://ui.endpoints.huggingface.co/
* Set `api_base` to your deployed api base
* Add the `huggingface/` prefix to your model so litellm knows it's a huggingface Deployed Inference Endpoint
<Tabs>
<TabItem value="sdk" label="SDK">
```python
import os
from litellm import completion
os.environ["HUGGINGFACE_API_KEY"] = ""
# TGI model: Call https://huggingface.co/glaiveai/glaive-coder-7b
# add the 'huggingface/' prefix to the model to set huggingface as the provider
# set api base to your deployed api endpoint from hugging face
response = completion(
model="huggingface/glaiveai/glaive-coder-7b",
messages=[{ "content": "Hello, how are you?","role": "user"}],
api_base="https://wjiegasee9bmqke2.us-east-1.aws.endpoints.huggingface.cloud"
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Add models to your config.yaml
```yaml
model_list:
- model_name: glaive-coder
litellm_params:
model: huggingface/glaiveai/glaive-coder-7b
api_key: os.environ/HUGGINGFACE_API_KEY
api_base: "https://wjiegasee9bmqke2.us-east-1.aws.endpoints.huggingface.cloud"
```
2. Start the proxy
```bash
$ litellm --config /path/to/config.yaml --debug
```
3. Test it!
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "glaive-coder",
"messages": [
{
"role": "user",
"content": "I like you!"
}
],
}'
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
## Streaming
<a target="_blank" href="https://colab.research.google.com/github/BerriAI/litellm/blob/main/cookbook/LiteLLM_HuggingFace.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
You need to tell LiteLLM when you're calling Huggingface.
This is done by adding the "huggingface/" prefix to `model`, example `completion(model="huggingface/<model_name>",...)`.
```python
import os
from litellm import completion
# [OPTIONAL] set env var
os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key"
messages = [{ "content": "There's a llama in my garden 😱 What should I do?","role": "user"}]
# e.g. Call 'facebook/blenderbot-400M-distill' hosted on HF Inference endpoints
response = completion(
model="huggingface/facebook/blenderbot-400M-distill",
messages=messages,
api_base="https://my-endpoint.huggingface.cloud",
stream=True
)
print(response)
for chunk in response:
print(chunk)
print(chunk)
```
### Image Input
```python
import os
from litellm import completion
os.environ["HF_TOKEN"] = "hf_xxxxxx"
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
}
},
],
}
]
response = completion(
model="huggingface/tgi",
messages=messages,
api_base="https://my-endpoint.endpoints.huggingface.cloud/v1/""
)
print(response.choices[0])
```
### Function Calling
```python
import os
from litellm import completion
os.environ["HF_TOKEN"] = "hf_xxxxxx"
functions = [{
"name": "get_weather",
"description": "Get the weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location to get weather for"
}
},
"required": ["location"]
}
}]
response = completion(
model="huggingface/tgi",
messages=[{"content": "What's the weather like in San Francisco?", "role": "user"}],
api_base="https://my-endpoint.endpoints.huggingface.cloud/v1/",
functions=functions
)
print(response)
```
</TabItem>
</Tabs>
## LiteLLM Proxy Server with Hugging Face models
You can set up a [LiteLLM Proxy Server](https://docs.litellm.ai/#litellm-proxy-server-llm-gateway) to serve Hugging Face models through any of the supported Inference Providers. Here's how to do it:
### Step 1. Setup the config file
In this case, we are configuring a proxy to serve `DeepSeek R1` from Hugging Face, using Together AI as the backend Inference Provider.
```yaml
model_list:
- model_name: my-r1-model
litellm_params:
model: huggingface/together/deepseek-ai/DeepSeek-R1
api_key: os.environ/HF_TOKEN # ensure you have `HF_TOKEN` in your .env
```
### Step 2. Start the server
```bash
litellm --config /path/to/config.yaml
```
### Step 3. Make a request to the server
<Tabs>
<TabItem value="curl" label="curl">
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "my-r1-model",
"messages": [
{
"role": "user",
"content": "Hello, how are you?"
}
]
}'
```
</TabItem>
<TabItem value="python" label="python">
```python
# pip install openai
from openai import OpenAI
client = OpenAI(
base_url="http://0.0.0.0:4000",
api_key="anything",
)
response = client.chat.completions.create(
model="my-r1-model",
messages=[
{"role": "user", "content": "Hello, how are you?"}
]
)
print(response)
```
</TabItem>
</Tabs>
## Embedding
LiteLLM supports Hugging Face's [text-embedding-inference](https://github.com/huggingface/text-embeddings-inference) format.
LiteLLM supports Hugging Face's [text-embedding-inference](https://github.com/huggingface/text-embeddings-inference) models as well.
```python
from litellm import embedding
import os
os.environ['HUGGINGFACE_API_KEY'] = ""
os.environ['HF_TOKEN'] = "hf_xxxxxx"
response = embedding(
model='huggingface/microsoft/codebert-base',
input=["good morning from litellm"]
)
```
## Advanced
### Setting API KEYS + API BASE
If required, you can set the api key + api base, set it in your os environment. [Code for how it's sent](https://github.com/BerriAI/litellm/blob/0100ab2382a0e720c7978fbf662cc6e6920e7e03/litellm/llms/huggingface_restapi.py#L25)
```python
import os
os.environ["HUGGINGFACE_API_KEY"] = ""
os.environ["HUGGINGFACE_API_BASE"] = ""
```
### Viewing Log probs
#### Using `decoder_input_details` - OpenAI `echo`
The `echo` param is supported by OpenAI Completions - Use `litellm.text_completion()` for this
```python
from litellm import text_completion
response = text_completion(
model="huggingface/bigcode/starcoder",
prompt="good morning",
max_tokens=10, logprobs=10,
echo=True
)
```
#### Output
```json
{
"id": "chatcmpl-3fc71792-c442-4ba1-a611-19dd0ac371ad",
"object": "text_completion",
"created": 1698801125.936519,
"model": "bigcode/starcoder",
"choices": [
{
"text": ", I'm going to make you a sand",
"index": 0,
"logprobs": {
"tokens": [
"good",
" morning",
",",
" I",
"'m",
" going",
" to",
" make",
" you",
" a",
" s",
"and"
],
"token_logprobs": [
"None",
-14.96875,
-2.2285156,
-2.734375,
-2.0957031,
-2.0917969,
-0.09429932,
-3.1132812,
-1.3203125,
-1.2304688,
-1.6201172,
-0.010292053
]
},
"finish_reason": "length"
}
],
"usage": {
"completion_tokens": 9,
"prompt_tokens": 2,
"total_tokens": 11
}
}
```
### Models with Prompt Formatting
For models with special prompt templates (e.g. Llama2), we format the prompt to fit their template.
#### Models with natively Supported Prompt Templates
| Model Name | Works for Models | Function Call | Required OS Variables |
| ------------------------------------ | ---------------------------------- | ----------------------------------------------------------------------------------------------------------------------- | ----------------------------------- |
| mistralai/Mistral-7B-Instruct-v0.1 | mistralai/Mistral-7B-Instruct-v0.1 | `completion(model='huggingface/mistralai/Mistral-7B-Instruct-v0.1', messages=messages, api_base="your_api_endpoint")` | `os.environ['HUGGINGFACE_API_KEY']` |
| meta-llama/Llama-2-7b-chat | All meta-llama llama2 chat models | `completion(model='huggingface/meta-llama/Llama-2-7b', messages=messages, api_base="your_api_endpoint")` | `os.environ['HUGGINGFACE_API_KEY']` |
| tiiuae/falcon-7b-instruct | All falcon instruct models | `completion(model='huggingface/tiiuae/falcon-7b-instruct', messages=messages, api_base="your_api_endpoint")` | `os.environ['HUGGINGFACE_API_KEY']` |
| mosaicml/mpt-7b-chat | All mpt chat models | `completion(model='huggingface/mosaicml/mpt-7b-chat', messages=messages, api_base="your_api_endpoint")` | `os.environ['HUGGINGFACE_API_KEY']` |
| codellama/CodeLlama-34b-Instruct-hf | All codellama instruct models | `completion(model='huggingface/codellama/CodeLlama-34b-Instruct-hf', messages=messages, api_base="your_api_endpoint")` | `os.environ['HUGGINGFACE_API_KEY']` |
| WizardLM/WizardCoder-Python-34B-V1.0 | All wizardcoder models | `completion(model='huggingface/WizardLM/WizardCoder-Python-34B-V1.0', messages=messages, api_base="your_api_endpoint")` | `os.environ['HUGGINGFACE_API_KEY']` |
| Phind/Phind-CodeLlama-34B-v2 | All phind-codellama models | `completion(model='huggingface/Phind/Phind-CodeLlama-34B-v2', messages=messages, api_base="your_api_endpoint")` | `os.environ['HUGGINGFACE_API_KEY']` |
**What if we don't support a model you need?**
You can also specify you're own custom prompt formatting, in case we don't have your model covered yet.
**Does this mean you have to specify a prompt for all models?**
No. By default we'll concatenate your message content to make a prompt.
**Default Prompt Template**
```python
def default_pt(messages):
return " ".join(message["content"] for message in messages)
```
[Code for how prompt formats work in LiteLLM](https://github.com/BerriAI/litellm/blob/main/litellm/llms/prompt_templates/factory.py)
#### Custom prompt templates
```python
import litellm
# Create your own custom prompt template works
litellm.register_prompt_template(
model="togethercomputer/LLaMA-2-7B-32K",
roles={
"system": {
"pre_message": "[INST] <<SYS>>\n",
"post_message": "\n<</SYS>>\n [/INST]\n"
},
"user": {
"pre_message": "[INST] ",
"post_message": " [/INST]\n"
},
"assistant": {
"post_message": "\n"
}
}
)
def test_huggingface_custom_model():
model = "huggingface/togethercomputer/LLaMA-2-7B-32K"
response = completion(model=model, messages=messages, api_base="https://ecd4sb5n09bo4ei2.us-east-1.aws.endpoints.huggingface.cloud")
print(response['choices'][0]['message']['content'])
return response
test_huggingface_custom_model()
```
[Implementation Code](https://github.com/BerriAI/litellm/blob/c0b3da2c14c791a0b755f0b1e5a9ef065951ecbf/litellm/llms/huggingface_restapi.py#L52)
### Deploying a model on huggingface
You can use any chat/text model from Hugging Face with the following steps:
- Copy your model id/url from Huggingface Inference Endpoints
- [ ] Go to https://ui.endpoints.huggingface.co/
- [ ] Copy the url of the specific model you'd like to use
<Image img={require('../../img/hf_inference_endpoint.png')} alt="HF_Dashboard" style={{ maxWidth: '50%', height: 'auto' }}/>
- Set it as your model name
- Set your HUGGINGFACE_API_KEY as an environment variable
Need help deploying a model on huggingface? [Check out this guide.](https://huggingface.co/docs/inference-endpoints/guides/create_endpoint)
# output
Same as the OpenAI format, but also includes logprobs. [See the code](https://github.com/BerriAI/litellm/blob/b4b2dbf005142e0a483d46a07a88a19814899403/litellm/llms/huggingface_restapi.py#L115)
```json
{
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "\ud83d\ude31\n\nComment: @SarahSzabo I'm",
"role": "assistant",
"logprobs": -22.697942825499993
}
}
],
"created": 1693436637.38206,
"model": "https://ji16r2iys9a8rjk2.us-east-1.aws.endpoints.huggingface.cloud",
"usage": {
"prompt_tokens": 14,
"completion_tokens": 11,
"total_tokens": 25
}
}
```
# FAQ
**Does this support stop sequences?**
**How does billing work with Hugging Face Inference Providers?**
Yes, we support stop sequences - and you can pass as many as allowed by Hugging Face (or any provider!)
> Billing is centralized on your Hugging Face account, no matter which providers you are using. You are billed the standard provider API rates with no additional markup - Hugging Face simply passes through the provider costs. Note that [Hugging Face PRO](https://huggingface.co/subscribe/pro) users get $2 worth of Inference credits every month that can be used across providers.
**How do you deal with repetition penalty?**
**Do I need to create an account for each Inference Provider?**
We map the presence penalty parameter in openai to the repetition penalty parameter on Hugging Face. [See code](https://github.com/BerriAI/litellm/blob/b4b2dbf005142e0a483d46a07a88a19814899403/litellm/utils.py#L757).
> No, you don't need to create separate accounts. All requests are routed through Hugging Face, so you only need your HF token. This allows you to easily benchmark different providers and choose the one that best fits your needs.
We welcome any suggestions for improving our Hugging Face integration - Create an [issue](https://github.com/BerriAI/litellm/issues/new/choose)/[Join the Discord](https://discord.com/invite/wuPM9dRgDw)!
**Will more inference providers be supported by Hugging Face in the future?**
> Yes! New inference providers (and models) are being added gradually.
We welcome any suggestions for improving our Hugging Face integration - Create an [issue](https://github.com/BerriAI/litellm/issues/new/choose)/[Join the Discord](https://discord.com/invite/wuPM9dRgDw)!

View file

@ -3,18 +3,17 @@ import TabItem from '@theme/TabItem';
# Infinity
| Property | Details |
|-------|-------|
| Description | Infinity is a high-throughput, low-latency REST API for serving text-embeddings, reranking models and clip|
| Provider Route on LiteLLM | `infinity/` |
| Supported Operations | `/rerank` |
| Link to Provider Doc | [Infinity ↗](https://github.com/michaelfeil/infinity) |
| Property | Details |
| ------------------------- | ---------------------------------------------------------------------------------------------------------- |
| Description | Infinity is a high-throughput, low-latency REST API for serving text-embeddings, reranking models and clip |
| Provider Route on LiteLLM | `infinity/` |
| Supported Operations | `/rerank`, `/embeddings` |
| Link to Provider Doc | [Infinity ↗](https://github.com/michaelfeil/infinity) |
## **Usage - LiteLLM Python SDK**
```python
from litellm import rerank
from litellm import rerank, embedding
import os
os.environ["INFINITY_API_BASE"] = "http://localhost:8080"
@ -39,8 +38,8 @@ model_list:
- model_name: custom-infinity-rerank
litellm_params:
model: infinity/rerank
api_key: os.environ/INFINITY_API_KEY
api_base: https://localhost:8080
api_key: os.environ/INFINITY_API_KEY
```
Start litellm
@ -51,7 +50,9 @@ litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
Test request
## Test request:
### Rerank
```bash
curl http://0.0.0.0:4000/rerank \
@ -70,15 +71,14 @@ curl http://0.0.0.0:4000/rerank \
}'
```
#### Supported Cohere Rerank API Params
## Supported Cohere Rerank API Params
| Param | Type | Description |
|-------|-------|-------|
| `query` | `str` | The query to rerank the documents against |
| `documents` | `list[str]` | The documents to rerank |
| `top_n` | `int` | The number of documents to return |
| `return_documents` | `bool` | Whether to return the documents in the response |
| Param | Type | Description |
| ------------------ | ----------- | ----------------------------------------------- |
| `query` | `str` | The query to rerank the documents against |
| `documents` | `list[str]` | The documents to rerank |
| `top_n` | `int` | The number of documents to return |
| `return_documents` | `bool` | Whether to return the documents in the response |
### Usage - Return Documents
@ -138,6 +138,7 @@ response = rerank(
raw_scores=True, # 👈 PROVIDER-SPECIFIC PARAM
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
@ -161,7 +162,7 @@ litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
3. Test it!
3. Test it!
```bash
curl http://0.0.0.0:4000/rerank \
@ -179,6 +180,121 @@ curl http://0.0.0.0:4000/rerank \
"raw_scores": True # 👈 PROVIDER-SPECIFIC PARAM
}'
```
</TabItem>
</Tabs>
## Embeddings
LiteLLM provides an OpenAI api compatible `/embeddings` endpoint for embedding calls.
**Setup**
Add this to your litellm proxy config.yaml
```yaml
model_list:
- model_name: custom-infinity-embedding
litellm_params:
model: infinity/provider/custom-embedding-v1
api_base: http://localhost:8080
api_key: os.environ/INFINITY_API_KEY
```
### Test request:
```bash
curl http://0.0.0.0:4000/embeddings \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"model": "custom-infinity-embedding",
"input": ["hello"]
}'
```
#### Supported Embedding API Params
| Param | Type | Description |
| ----------------- | ----------- | ----------------------------------------------------------- |
| `model` | `str` | The embedding model to use |
| `input` | `list[str]` | The text inputs to generate embeddings for |
| `encoding_format` | `str` | The format to return embeddings in (e.g. "float", "base64") |
| `modality` | `str` | The type of input (e.g. "text", "image", "audio") |
### Usage - Basic Examples
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import embedding
import os
os.environ["INFINITY_API_BASE"] = "http://localhost:8080"
response = embedding(
model="infinity/bge-small",
input=["good morning from litellm"]
)
print(response.data[0]['embedding'])
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```bash
curl http://0.0.0.0:4000/embeddings \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"model": "custom-infinity-embedding",
"input": ["hello"]
}'
```
</TabItem>
</Tabs>
### Usage - OpenAI Client
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from openai import OpenAI
client = OpenAI(
api_key="<LITELLM_MASTER_KEY>",
base_url="<LITELLM_URL>"
)
response = client.embeddings.create(
model="bge-small",
input=["The food was delicious and the waiter..."],
encoding_format="float"
)
print(response.data[0].embedding)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```bash
curl http://0.0.0.0:4000/embeddings \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"model": "bge-small",
"input": ["The food was delicious and the waiter..."],
"encoding_format": "float"
}'
```
</TabItem>
</Tabs>

View file

@ -163,6 +163,12 @@ os.environ["OPENAI_API_BASE"] = "openaiai-api-base" # OPTIONAL
| Model Name | Function Call |
|-----------------------|-----------------------------------------------------------------|
| gpt-4.1 | `response = completion(model="gpt-4.1", messages=messages)` |
| gpt-4.1-mini | `response = completion(model="gpt-4.1-mini", messages=messages)` |
| gpt-4.1-nano | `response = completion(model="gpt-4.1-nano", messages=messages)` |
| o4-mini | `response = completion(model="o4-mini", messages=messages)` |
| o3-mini | `response = completion(model="o3-mini", messages=messages)` |
| o3 | `response = completion(model="o3", messages=messages)` |
| o1-mini | `response = completion(model="o1-mini", messages=messages)` |
| o1-preview | `response = completion(model="o1-preview", messages=messages)` |
| gpt-4o-mini | `response = completion(model="gpt-4o-mini", messages=messages)` |

View file

@ -347,7 +347,7 @@ Return a `list[Recipe]`
completion(model="vertex_ai/gemini-1.5-flash-preview-0514", messages=messages, response_format={ "type": "json_object" })
```
### **Grounding**
### **Grounding - Web Search**
Add Google Search Result grounding to vertex ai calls.
@ -358,13 +358,13 @@ See the grounding metadata with `response_obj._hidden_params["vertex_ai_groundin
<Tabs>
<TabItem value="sdk" label="SDK">
```python
```python showLineNumbers
from litellm import completion
## SETUP ENVIRONMENT
# !gcloud auth application-default login - run this to add vertex credentials to your env
tools = [{"googleSearchRetrieval": {}}] # 👈 ADD GOOGLE SEARCH
tools = [{"googleSearch": {}}] # 👈 ADD GOOGLE SEARCH
resp = litellm.completion(
model="vertex_ai/gemini-1.0-pro-001",
@ -377,27 +377,121 @@ print(resp)
</TabItem>
<TabItem value="proxy" label="PROXY">
```bash
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python showLineNumbers
from openai import OpenAI
client = OpenAI(
api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
base_url="http://0.0.0.0:4000/v1/" # point to litellm proxy
)
response = client.chat.completions.create(
model="gemini-pro",
messages=[{"role": "user", "content": "Who won the world cup?"}],
tools=[{"googleSearch": {}}],
)
print(response)
```
</TabItem>
<TabItem value="curl" label="cURL">
```bash showLineNumbers
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gemini-pro",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
{"role": "user", "content": "Who won the world cup?"}
],
"tools": [
{
"googleSearchRetrieval": {}
"googleSearch": {}
}
]
}'
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
You can also use the `enterpriseWebSearch` tool for an [enterprise compliant search](https://cloud.google.com/vertex-ai/generative-ai/docs/grounding/web-grounding-enterprise).
<Tabs>
<TabItem value="sdk" label="SDK">
```python showLineNumbers
from litellm import completion
## SETUP ENVIRONMENT
# !gcloud auth application-default login - run this to add vertex credentials to your env
tools = [{"enterpriseWebSearch": {}}] # 👈 ADD GOOGLE ENTERPRISE SEARCH
resp = litellm.completion(
model="vertex_ai/gemini-1.0-pro-001",
messages=[{"role": "user", "content": "Who won the world cup?"}],
tools=tools,
)
print(resp)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python showLineNumbers
from openai import OpenAI
client = OpenAI(
api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
base_url="http://0.0.0.0:4000/v1/" # point to litellm proxy
)
response = client.chat.completions.create(
model="gemini-pro",
messages=[{"role": "user", "content": "Who won the world cup?"}],
tools=[{"enterpriseWebSearch": {}}],
)
print(response)
```
</TabItem>
<TabItem value="curl" label="cURL">
```bash showLineNumbers
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gemini-pro",
"messages": [
{"role": "user", "content": "Who won the world cup?"}
],
"tools": [
{
"enterpriseWebSearch": {}
}
]
}'
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
#### **Moving from Vertex AI SDK to LiteLLM (GROUNDING)**
@ -435,7 +529,7 @@ from litellm import completion
# !gcloud auth application-default login - run this to add vertex credentials to your env
tools = [{"googleSearchRetrieval": {"disable_attributon": False}}] # 👈 ADD GOOGLE SEARCH
tools = [{"googleSearch": {"disable_attributon": False}}] # 👈 ADD GOOGLE SEARCH
resp = litellm.completion(
model="vertex_ai/gemini-1.0-pro-001",
@ -448,9 +542,157 @@ print(resp)
```
### **Thinking / `reasoning_content`**
LiteLLM translates OpenAI's `reasoning_effort` to Gemini's `thinking` parameter. [Code](https://github.com/BerriAI/litellm/blob/620664921902d7a9bfb29897a7b27c1a7ef4ddfb/litellm/llms/vertex_ai/gemini/vertex_and_google_ai_studio_gemini.py#L362)
**Mapping**
| reasoning_effort | thinking |
| ---------------- | -------- |
| "low" | "budget_tokens": 1024 |
| "medium" | "budget_tokens": 2048 |
| "high" | "budget_tokens": 4096 |
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
# !gcloud auth application-default login - run this to add vertex credentials to your env
resp = completion(
model="vertex_ai/gemini-2.5-flash-preview-04-17",
messages=[{"role": "user", "content": "What is the capital of France?"}],
reasoning_effort="low",
vertex_project="project-id",
vertex_location="us-central1"
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
- model_name: gemini-2.5-flash
litellm_params:
model: vertex_ai/gemini-2.5-flash-preview-04-17
vertex_credentials: {"project_id": "project-id", "location": "us-central1", "project_key": "project-key"}
vertex_project: "project-id"
vertex_location: "us-central1"
```
2. Start proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
-d '{
"model": "gemini-2.5-flash",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"reasoning_effort": "low"
}'
```
</TabItem>
</Tabs>
**Expected Response**
```python
ModelResponse(
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
created=1740470510,
model='claude-3-7-sonnet-20250219',
object='chat.completion',
system_fingerprint=None,
choices=[
Choices(
finish_reason='stop',
index=0,
message=Message(
content="The capital of France is Paris.",
role='assistant',
tool_calls=None,
function_call=None,
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
),
)
],
usage=Usage(
completion_tokens=68,
prompt_tokens=42,
total_tokens=110,
completion_tokens_details=None,
prompt_tokens_details=PromptTokensDetailsWrapper(
audio_tokens=None,
cached_tokens=0,
text_tokens=None,
image_tokens=None
),
cache_creation_input_tokens=0,
cache_read_input_tokens=0
)
)
```
#### Pass `thinking` to Gemini models
You can also pass the `thinking` parameter to Gemini models.
This is translated to Gemini's [`thinkingConfig` parameter](https://ai.google.dev/gemini-api/docs/thinking#set-budget).
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
# !gcloud auth application-default login - run this to add vertex credentials to your env
response = litellm.completion(
model="vertex_ai/gemini-2.5-flash-preview-04-17",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
vertex_project="project-id",
vertex_location="us-central1"
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_KEY" \
-d '{
"model": "vertex_ai/gemini-2.5-flash-preview-04-17",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"thinking": {"type": "enabled", "budget_tokens": 1024}
}'
```
</TabItem>
</Tabs>
### **Context Caching**
Use Vertex AI context caching is supported by calling provider api directly. (Unified Endpoint support comin soon.).
Use Vertex AI context caching is supported by calling provider api directly. (Unified Endpoint support coming soon.).
[**Go straight to provider**](../pass_through/vertex_ai.md#context-caching)
@ -668,7 +910,7 @@ export VERTEXAI_PROJECT="my-test-project" # ONLY use if model project is differe
## Specifying Safety Settings
In certain use-cases you may need to make calls to the models and pass [safety settigns](https://ai.google.dev/docs/safety_setting_gemini) different from the defaults. To do so, simple pass the `safety_settings` argument to `completion` or `acompletion`. For example:
In certain use-cases you may need to make calls to the models and pass [safety settings](https://ai.google.dev/docs/safety_setting_gemini) different from the defaults. To do so, simple pass the `safety_settings` argument to `completion` or `acompletion`. For example:
### Set per model/request
@ -1808,7 +2050,7 @@ response = completion(
print(response.choices[0])
```
</TabItem>
<TabItem value="proxy" lable="PROXY">
<TabItem value="proxy" label="PROXY">
1. Add model to config

View file

@ -161,6 +161,120 @@ curl -L -X POST 'http://0.0.0.0:4000/embeddings' \
Example Implementation from VLLM [here](https://github.com/vllm-project/vllm/pull/10020)
<Tabs>
<TabItem value="files_message" label="(Unified) Files Message">
Use this to send a video url to VLLM + Gemini in the same format, using OpenAI's `files` message type.
There are two ways to send a video url to VLLM:
1. Pass the video url directly
```
{"type": "file", "file": {"file_id": video_url}},
```
2. Pass the video data as base64
```
{"type": "file", "file": {"file_data": f"data:video/mp4;base64,{video_data_base64}"}}
```
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Summarize the following video"
},
{
"type": "file",
"file": {
"file_id": "https://www.youtube.com/watch?v=dQw4w9WgXcQ"
}
}
]
}
]
# call vllm
os.environ["HOSTED_VLLM_API_BASE"] = "https://hosted-vllm-api.co"
os.environ["HOSTED_VLLM_API_KEY"] = "" # [optional], if your VLLM server requires an API key
response = completion(
model="hosted_vllm/qwen", # pass the vllm model name
messages=messages,
)
# call gemini
os.environ["GEMINI_API_KEY"] = "your-gemini-api-key"
response = completion(
model="gemini/gemini-1.5-flash", # pass the gemini model name
messages=messages,
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: my-model
litellm_params:
model: hosted_vllm/qwen # add hosted_vllm/ prefix to route as OpenAI provider
api_base: https://hosted-vllm-api.co # add api base for OpenAI compatible provider
- model_name: my-gemini-model
litellm_params:
model: gemini/gemini-1.5-flash # add gemini/ prefix to route as Google AI Studio provider
api_key: os.environ/GEMINI_API_KEY
```
2. Start the proxy
```bash
$ litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
3. Test it!
```bash
curl -X POST http://0.0.0.0:4000/chat/completions \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"model": "my-model",
"messages": [
{"role": "user", "content":
[
{"type": "text", "text": "Summarize the following video"},
{"type": "file", "file": {"file_id": "https://www.youtube.com/watch?v=dQw4w9WgXcQ"}}
]
}
]
}'
```
</TabItem>
</Tabs>
</TabItem>
<TabItem value="video_url" label="(VLLM-specific) Video Message">
Use this to send a video url to VLLM in it's native message format (`video_url`).
There are two ways to send a video url to VLLM:
1. Pass the video url directly
@ -249,6 +363,10 @@ curl -X POST http://0.0.0.0:4000/chat/completions \
</Tabs>
</TabItem>
</Tabs>
## (Deprecated) for `vllm pip package`
### Using - `litellm.completion`

View file

@ -18,13 +18,14 @@ os.environ['XAI_API_KEY']
```
## Sample Usage
```python
```python showLineNumbers title="LiteLLM python sdk usage - Non-streaming"
from litellm import completion
import os
os.environ['XAI_API_KEY'] = ""
response = completion(
model="xai/grok-2-latest",
model="xai/grok-3-mini-beta",
messages=[
{
"role": "user",
@ -45,13 +46,14 @@ print(response)
```
## Sample Usage - Streaming
```python
```python showLineNumbers title="LiteLLM python sdk usage - Streaming"
from litellm import completion
import os
os.environ['XAI_API_KEY'] = ""
response = completion(
model="xai/grok-2-latest",
model="xai/grok-3-mini-beta",
messages=[
{
"role": "user",
@ -75,7 +77,8 @@ for chunk in response:
```
## Sample Usage - Vision
```python
```python showLineNumbers title="LiteLLM python sdk usage - Vision"
import os
from litellm import completion
@ -110,7 +113,7 @@ Here's how to call a XAI model with the LiteLLM Proxy Server
1. Modify the config.yaml
```yaml
```yaml showLineNumbers
model_list:
- model_name: my-model
litellm_params:
@ -131,7 +134,7 @@ Here's how to call a XAI model with the LiteLLM Proxy Server
<TabItem value="openai" label="OpenAI Python v1.0.0+">
```python
```python showLineNumbers
import openai
client = openai.OpenAI(
api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
@ -173,3 +176,81 @@ Here's how to call a XAI model with the LiteLLM Proxy Server
</Tabs>
## Reasoning Usage
LiteLLM supports reasoning usage for xAI models.
<Tabs>
<TabItem value="python" label="LiteLLM Python SDK">
```python showLineNumbers title="reasoning with xai/grok-3-mini-beta"
import litellm
response = litellm.completion(
model="xai/grok-3-mini-beta",
messages=[{"role": "user", "content": "What is 101*3?"}],
reasoning_effort="low",
)
print("Reasoning Content:")
print(response.choices[0].message.reasoning_content)
print("\nFinal Response:")
print(completion.choices[0].message.content)
print("\nNumber of completion tokens (input):")
print(completion.usage.completion_tokens)
print("\nNumber of reasoning tokens (input):")
print(completion.usage.completion_tokens_details.reasoning_tokens)
```
</TabItem>
<TabItem value="curl" label="LiteLLM Proxy - OpenAI SDK Usage">
```python showLineNumbers title="reasoning with xai/grok-3-mini-beta"
import openai
client = openai.OpenAI(
api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
base_url="http://0.0.0.0:4000" # litellm-proxy-base url
)
response = client.chat.completions.create(
model="xai/grok-3-mini-beta",
messages=[{"role": "user", "content": "What is 101*3?"}],
reasoning_effort="low",
)
print("Reasoning Content:")
print(response.choices[0].message.reasoning_content)
print("\nFinal Response:")
print(completion.choices[0].message.content)
print("\nNumber of completion tokens (input):")
print(completion.usage.completion_tokens)
print("\nNumber of reasoning tokens (input):")
print(completion.usage.completion_tokens_details.reasoning_tokens)
```
</TabItem>
</Tabs>
**Example Response:**
```shell
Reasoning Content:
Let me calculate 101 multiplied by 3:
101 * 3 = 303.
I can double-check that: 100 * 3 is 300, and 1 * 3 is 3, so 300 + 3 = 303. Yes, that's correct.
Final Response:
The result of 101 multiplied by 3 is 303.
Number of completion tokens (input):
14
Number of reasoning tokens (input):
310
```

View file

@ -243,12 +243,12 @@ We allow you to pass a local image or a an http/https url of your image
Set `UI_LOGO_PATH` on your env. We recommend using a hosted image, it's a lot easier to set up and configure / debug
Exaple setting Hosted image
Example setting Hosted image
```shell
UI_LOGO_PATH="https://litellm-logo-aws-marketplace.s3.us-west-2.amazonaws.com/berriai-logo-github.png"
```
Exaple setting a local image (on your container)
Example setting a local image (on your container)
```shell
UI_LOGO_PATH="ui_images/logo.jpg"
```

View file

@ -213,7 +213,7 @@ model_list:
general_settings:
master_key: sk-1234
alerting: ["slack"]
alerting_threshold: 0.0001 # (Seconds) set an artifically low threshold for testing alerting
alerting_threshold: 0.0001 # (Seconds) set an artificially low threshold for testing alerting
alert_to_webhook_url: {
"llm_exceptions": "https://hooks.slack.com/services/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",
"llm_too_slow": "https://hooks.slack.com/services/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",
@ -247,7 +247,7 @@ model_list:
general_settings:
master_key: sk-1234
alerting: ["slack"]
alerting_threshold: 0.0001 # (Seconds) set an artifically low threshold for testing alerting
alerting_threshold: 0.0001 # (Seconds) set an artificially low threshold for testing alerting
alert_to_webhook_url: {
"llm_exceptions": ["os.environ/SLACK_WEBHOOK_URL", "os.environ/SLACK_WEBHOOK_URL_2"],
"llm_too_slow": ["https://webhook.site/7843a980-a494-4967-80fb-d502dbc16886", "https://webhook.site/28cfb179-f4fb-4408-8129-729ff55cf213"],
@ -425,7 +425,7 @@ curl -X GET --location 'http://0.0.0.0:4000/health/services?service=webhook' \
- `projected_exceeded_date` *str or null*: The date when the budget is projected to be exceeded, returned when 'soft_budget' is set for key (optional).
- `projected_spend` *float or null*: The projected spend amount, returned when 'soft_budget' is set for key (optional).
- `event` *Literal["budget_crossed", "threshold_crossed", "projected_limit_exceeded"]*: The type of event that triggered the webhook. Possible values are:
* "spend_tracked": Emitted whenver spend is tracked for a customer id.
* "spend_tracked": Emitted whenever spend is tracked for a customer id.
* "budget_crossed": Indicates that the spend has exceeded the max budget.
* "threshold_crossed": Indicates that spend has crossed a threshold (currently sent when 85% and 95% of budget is reached).
* "projected_limit_exceeded": For "key" only - Indicates that the projected spend is expected to exceed the soft budget threshold.
@ -480,7 +480,7 @@ LLM-related Alerts
| `cooldown_deployment` | Alerts when a deployment is put into cooldown | ✅ |
| `new_model_added` | Notifications when a new model is added to litellm proxy through /model/new| ✅ |
| `outage_alerts` | Alerts when a specific LLM deployment is facing an outage | ✅ |
| `region_outage_alerts` | Alerts when a specfic LLM region is facing an outage. Example us-east-1 | ✅ |
| `region_outage_alerts` | Alerts when a specific LLM region is facing an outage. Example us-east-1 | ✅ |
Budget and Spend Alerts

View file

@ -299,6 +299,9 @@ router_settings:
|------|-------------|
| ACTIONS_ID_TOKEN_REQUEST_TOKEN | Token for requesting ID in GitHub Actions
| ACTIONS_ID_TOKEN_REQUEST_URL | URL for requesting ID token in GitHub Actions
| AGENTOPS_ENVIRONMENT | Environment for AgentOps logging integration
| AGENTOPS_API_KEY | API Key for AgentOps logging integration
| AGENTOPS_SERVICE_NAME | Service Name for AgentOps logging integration
| AISPEND_ACCOUNT_ID | Account ID for AI Spend
| AISPEND_API_KEY | API Key for AI Spend
| ALLOWED_EMAIL_DOMAINS | List of email domains allowed for access
@ -323,6 +326,9 @@ router_settings:
| AZURE_AUTHORITY_HOST | Azure authority host URL
| AZURE_CLIENT_ID | Client ID for Azure services
| AZURE_CLIENT_SECRET | Client secret for Azure services
| AZURE_TENANT_ID | Tenant ID for Azure Active Directory
| AZURE_USERNAME | Username for Azure services, use in conjunction with AZURE_PASSWORD for azure ad token with basic username/password workflow
| AZURE_PASSWORD | Password for Azure services, use in conjunction with AZURE_USERNAME for azure ad token with basic username/password workflow
| AZURE_FEDERATED_TOKEN_FILE | File path to Azure federated token
| AZURE_KEY_VAULT_URI | URI for Azure Key Vault
| AZURE_STORAGE_ACCOUNT_KEY | The Azure Storage Account Key to use for Authentication to Azure Blob Storage logging
@ -331,7 +337,6 @@ router_settings:
| AZURE_STORAGE_TENANT_ID | The Application Tenant ID to use for Authentication to Azure Blob Storage logging
| AZURE_STORAGE_CLIENT_ID | The Application Client ID to use for Authentication to Azure Blob Storage logging
| AZURE_STORAGE_CLIENT_SECRET | The Application Client Secret to use for Authentication to Azure Blob Storage logging
| AZURE_TENANT_ID | Tenant ID for Azure Active Directory
| BERRISPEND_ACCOUNT_ID | Account ID for BerriSpend service
| BRAINTRUST_API_KEY | API key for Braintrust integration
| CIRCLE_OIDC_TOKEN | OpenID Connect token for CircleCI
@ -406,6 +411,7 @@ router_settings:
| HELICONE_API_KEY | API key for Helicone service
| HOSTNAME | Hostname for the server, this will be [emitted to `datadog` logs](https://docs.litellm.ai/docs/proxy/logging#datadog)
| HUGGINGFACE_API_BASE | Base URL for Hugging Face API
| HUGGINGFACE_API_KEY | API key for Hugging Face API
| IAM_TOKEN_DB_AUTH | IAM token for database authentication
| JSON_LOGS | Enable JSON formatted logging
| JWT_AUDIENCE | Expected audience for JWT tokens
@ -432,6 +438,7 @@ router_settings:
| LITERAL_BATCH_SIZE | Batch size for Literal operations
| LITELLM_DONT_SHOW_FEEDBACK_BOX | Flag to hide feedback box in LiteLLM UI
| LITELLM_DROP_PARAMS | Parameters to drop in LiteLLM requests
| LITELLM_MODIFY_PARAMS | Parameters to modify in LiteLLM requests
| LITELLM_EMAIL | Email associated with LiteLLM account
| LITELLM_GLOBAL_MAX_PARALLEL_REQUEST_RETRIES | Maximum retries for parallel requests in LiteLLM
| LITELLM_GLOBAL_MAX_PARALLEL_REQUEST_RETRY_TIMEOUT | Timeout for retries of parallel requests in LiteLLM
@ -445,9 +452,12 @@ router_settings:
| LITELLM_TOKEN | Access token for LiteLLM integration
| LITELLM_PRINT_STANDARD_LOGGING_PAYLOAD | If true, prints the standard logging payload to the console - useful for debugging
| LOGFIRE_TOKEN | Token for Logfire logging service
| MISTRAL_API_BASE | Base URL for Mistral API
| MISTRAL_API_KEY | API key for Mistral API
| MICROSOFT_CLIENT_ID | Client ID for Microsoft services
| MICROSOFT_CLIENT_SECRET | Client secret for Microsoft services
| MICROSOFT_TENANT | Tenant ID for Microsoft Azure
| MICROSOFT_SERVICE_PRINCIPAL_ID | Service Principal ID for Microsoft Enterprise Application. (This is an advanced feature if you want litellm to auto-assign members to Litellm Teams based on their Microsoft Entra ID Groups)
| NO_DOCS | Flag to disable documentation generation
| NO_PROXY | List of addresses to bypass proxy
| OAUTH_TOKEN_INFO_ENDPOINT | Endpoint for OAuth token info retrieval

View file

@ -6,6 +6,8 @@ import Image from '@theme/IdealImage';
Track spend for keys, users, and teams across 100+ LLMs.
LiteLLM automatically tracks spend for all known models. See our [model cost map](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json)
### How to Track Spend with LiteLLM
**Step 1**
@ -35,10 +37,10 @@ response = client.chat.completions.create(
"content": "this is a test request, write a short poem"
}
],
user="palantir",
extra_body={
user="palantir", # OPTIONAL: pass user to track spend by user
extra_body={
"metadata": {
"tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"]
"tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"] # ENTERPRISE: pass tags to track spend by tags
}
}
)
@ -63,9 +65,9 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
"content": "what llm are you"
}
],
"user": "palantir",
"user": "palantir", # OPTIONAL: pass user to track spend by user
"metadata": {
"tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"]
"tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"] # ENTERPRISE: pass tags to track spend by tags
}
}'
```
@ -90,7 +92,7 @@ chat = ChatOpenAI(
user="palantir",
extra_body={
"metadata": {
"tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"]
"tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"] # ENTERPRISE: pass tags to track spend by tags
}
}
)
@ -150,8 +152,112 @@ Navigate to the Usage Tab on the LiteLLM UI (found on https://your-proxy-endpoin
</TabItem>
</Tabs>
## ✨ (Enterprise) API Endpoints to get Spend
### Getting Spend Reports - To Charge Other Teams, Customers, Users
### Allowing Non-Proxy Admins to access `/spend` endpoints
Use this when you want non-proxy admins to access `/spend` endpoints
:::info
Schedule a [meeting with us to get your Enterprise License](https://calendly.com/d/4mp-gd3-k5k/litellm-1-1-onboarding-chat)
:::
##### Create Key
Create Key with with `permissions={"get_spend_routes": true}`
```shell
curl --location 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"permissions": {"get_spend_routes": true}
}'
```
##### Use generated key on `/spend` endpoints
Access spend Routes with newly generate keys
```shell
curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30' \
-H 'Authorization: Bearer sk-H16BKvrSNConSsBYLGc_7A'
```
#### Reset Team, API Key Spend - MASTER KEY ONLY
Use `/global/spend/reset` if you want to:
- Reset the Spend for all API Keys, Teams. The `spend` for ALL Teams and Keys in `LiteLLM_TeamTable` and `LiteLLM_VerificationToken` will be set to `spend=0`
- LiteLLM will maintain all the logs in `LiteLLMSpendLogs` for Auditing Purposes
##### Request
Only the `LITELLM_MASTER_KEY` you set can access this route
```shell
curl -X POST \
'http://localhost:4000/global/spend/reset' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json'
```
##### Expected Responses
```shell
{"message":"Spend for all API Keys and Teams reset successfully","status":"success"}
```
## Daily Spend Breakdown API
Retrieve granular daily usage data for a user (by model, provider, and API key) with a single endpoint.
Example Request:
```shell title="Daily Spend Breakdown API" showLineNumbers
curl -L -X GET 'http://localhost:4000/user/daily/activity?start_date=2025-03-20&end_date=2025-03-27' \
-H 'Authorization: Bearer sk-...'
```
```json title="Daily Spend Breakdown API Response" showLineNumbers
{
"results": [
{
"date": "2025-03-27",
"metrics": {
"spend": 0.0177072,
"prompt_tokens": 111,
"completion_tokens": 1711,
"total_tokens": 1822,
"api_requests": 11
},
"breakdown": {
"models": {
"gpt-4o-mini": {
"spend": 1.095e-05,
"prompt_tokens": 37,
"completion_tokens": 9,
"total_tokens": 46,
"api_requests": 1
},
"providers": { "openai": { ... }, "azure_ai": { ... } },
"api_keys": { "3126b6eaf1...": { ... } }
}
}
],
"metadata": {
"total_spend": 0.7274667,
"total_prompt_tokens": 280990,
"total_completion_tokens": 376674,
"total_api_requests": 14
}
}
```
### API Reference
See our [Swagger API](https://litellm-api.up.railway.app/#/Budget%20%26%20Spend%20Tracking/get_user_daily_activity_user_daily_activity_get) for more details on the `/user/daily/activity` endpoint
## ✨ (Enterprise) Generate Spend Reports
Use this to charge other teams, customers, users
Use the `/global/spend/report` endpoint to get spend reports
@ -470,105 +576,6 @@ curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end
</Tabs>
### Allowing Non-Proxy Admins to access `/spend` endpoints
Use this when you want non-proxy admins to access `/spend` endpoints
:::info
Schedule a [meeting with us to get your Enterprise License](https://calendly.com/d/4mp-gd3-k5k/litellm-1-1-onboarding-chat)
:::
##### Create Key
Create Key with with `permissions={"get_spend_routes": true}`
```shell
curl --location 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"permissions": {"get_spend_routes": true}
}'
```
##### Use generated key on `/spend` endpoints
Access spend Routes with newly generate keys
```shell
curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30' \
-H 'Authorization: Bearer sk-H16BKvrSNConSsBYLGc_7A'
```
#### Reset Team, API Key Spend - MASTER KEY ONLY
Use `/global/spend/reset` if you want to:
- Reset the Spend for all API Keys, Teams. The `spend` for ALL Teams and Keys in `LiteLLM_TeamTable` and `LiteLLM_VerificationToken` will be set to `spend=0`
- LiteLLM will maintain all the logs in `LiteLLMSpendLogs` for Auditing Purposes
##### Request
Only the `LITELLM_MASTER_KEY` you set can access this route
```shell
curl -X POST \
'http://localhost:4000/global/spend/reset' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json'
```
##### Expected Responses
```shell
{"message":"Spend for all API Keys and Teams reset successfully","status":"success"}
```
## Spend Tracking for Azure OpenAI Models
Set base model for cost tracking azure image-gen call
#### Image Generation
```yaml
model_list:
- model_name: dall-e-3
litellm_params:
model: azure/dall-e-3-test
api_version: 2023-06-01-preview
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_key: os.environ/AZURE_API_KEY
base_model: dall-e-3 # 👈 set dall-e-3 as base model
model_info:
mode: image_generation
```
#### Chat Completions / Embeddings
**Problem**: Azure returns `gpt-4` in the response when `azure/gpt-4-1106-preview` is used. This leads to inaccurate cost tracking
**Solution** ✅ : Set `base_model` on your config so litellm uses the correct model for calculating azure cost
Get the base model name from [here](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json)
Example config with `base_model`
```yaml
model_list:
- model_name: azure-gpt-3.5
litellm_params:
model: azure/chatgpt-v-2
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: "2023-07-01-preview"
model_info:
base_model: azure/gpt-4-1106-preview
```
## Custom Input/Output Pricing
👉 Head to [Custom Input/Output Pricing](https://docs.litellm.ai/docs/proxy/custom_pricing) to setup custom pricing or your models
## ✨ Custom Spend Log metadata
@ -587,4 +594,5 @@ Logging specific key,value pairs in spend logs metadata is an enterprise feature
Tracking spend with Custom tags is an enterprise feature. [See here](./enterprise.md#tracking-spend-for-custom-tags)
:::
:::

View file

@ -26,10 +26,12 @@ model_list:
- model_name: sagemaker-completion-model
litellm_params:
model: sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4
model_info:
input_cost_per_second: 0.000420
- model_name: sagemaker-embedding-model
litellm_params:
model: sagemaker/berri-benchmarking-gpt-j-6b-fp16
model_info:
input_cost_per_second: 0.000420
```
@ -54,12 +56,56 @@ model_list:
model: azure/<your_deployment_name>
api_key: os.environ/AZURE_API_KEY
api_base: os.environ/AZURE_API_BASE
api_version: os.envrion/AZURE_API_VERSION
api_version: os.environ/AZURE_API_VERSION
model_info:
input_cost_per_token: 0.000421 # 👈 ONLY to track cost per token
output_cost_per_token: 0.000520 # 👈 ONLY to track cost per token
```
### Debugging
## Override Model Cost Map
You can override [our model cost map](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json) with your own custom pricing for a mapped model.
Just add a `model_info` key to your model in the config, and override the desired keys.
Example: Override Anthropic's model cost map for the `prod/claude-3-5-sonnet-20241022` model.
```yaml
model_list:
- model_name: "prod/claude-3-5-sonnet-20241022"
litellm_params:
model: "anthropic/claude-3-5-sonnet-20241022"
api_key: os.environ/ANTHROPIC_PROD_API_KEY
model_info:
input_cost_per_token: 0.000006
output_cost_per_token: 0.00003
cache_creation_input_token_cost: 0.0000075
cache_read_input_token_cost: 0.0000006
```
## Set 'base_model' for Cost Tracking (e.g. Azure deployments)
**Problem**: Azure returns `gpt-4` in the response when `azure/gpt-4-1106-preview` is used. This leads to inaccurate cost tracking
**Solution** ✅ : Set `base_model` on your config so litellm uses the correct model for calculating azure cost
Get the base model name from [here](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json)
Example config with `base_model`
```yaml
model_list:
- model_name: azure-gpt-3.5
litellm_params:
model: azure/chatgpt-v-2
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: "2023-07-01-preview"
model_info:
base_model: azure/gpt-4-1106-preview
```
## Debugging
If you're custom pricing is not being used or you're seeing errors, please check the following:
@ -87,4 +133,4 @@ acompletion(
If these keys are not present, LiteLLM will not use your custom pricing.
If the problem persists, please file an issue on [GitHub](https://github.com/BerriAI/litellm/issues).
If the problem persists, please file an issue on [GitHub](https://github.com/BerriAI/litellm/issues).

View file

@ -19,7 +19,7 @@ LiteLLM writes `UPDATE` and `UPSERT` queries to the DB. When using 10+ instances
### Stage 1. Each instance writes updates to redis
Each instance will accumlate the spend updates for a key, user, team, etc and write the updates to a redis queue.
Each instance will accumulate the spend updates for a key, user, team, etc and write the updates to a redis queue.
<Image img={require('../../img/deadlock_fix_1.png')} style={{ width: '900px', height: 'auto' }} />
<p style={{textAlign: 'left', color: '#666'}}>

View file

@ -22,7 +22,7 @@ echo 'LITELLM_MASTER_KEY="sk-1234"' > .env
# Add the litellm salt key - you cannot change this after adding a model
# It is used to encrypt / decrypt your LLM API Key credentials
# We recommned - https://1password.com/password-generator/
# We recommend - https://1password.com/password-generator/
# password generator to get a random hash for litellm salt key
echo 'LITELLM_SALT_KEY="sk-1234"' >> .env
@ -125,7 +125,7 @@ CMD ["--port", "4000", "--config", "config.yaml", "--detailed_debug"]
### Build from litellm `pip` package
Follow these instructons to build a docker container from the litellm pip package. If your company has a strict requirement around security / building images you can follow these steps.
Follow these instructions to build a docker container from the litellm pip package. If your company has a strict requirement around security / building images you can follow these steps.
Dockerfile
@ -999,7 +999,7 @@ services:
- "4000:4000" # Map the container port to the host, change the host port if necessary
volumes:
- ./litellm-config.yaml:/app/config.yaml # Mount the local configuration file
# You can change the port or number of workers as per your requirements or pass any new supported CLI augument. Make sure the port passed here matches with the container port defined above in `ports` value
# You can change the port or number of workers as per your requirements or pass any new supported CLI argument. Make sure the port passed here matches with the container port defined above in `ports` value
command: [ "--config", "/app/config.yaml", "--port", "4000", "--num_workers", "8" ]
# ...rest of your docker-compose config if any

View file

@ -691,7 +691,7 @@ curl --request POST \
<TabItem value="admin_only_routes" label="Test `admin_only_routes`">
**Successfull Request**
**Successful Request**
```shell
curl --location 'http://0.0.0.0:4000/key/generate' \
@ -729,7 +729,7 @@ curl --location 'http://0.0.0.0:4000/key/generate' \
<TabItem value="allowed_routes" label="Test `allowed_routes`">
**Successfull Request**
**Successful Request**
```shell
curl http://localhost:4000/chat/completions \

View file

@ -140,7 +140,7 @@ The above request should not be blocked, and you should receive a regular LLM re
</Tabs>
# Advanced
## Advanced
Aim Guard provides user-specific Guardrail policies, enabling you to apply tailored policies to individual users.
To utilize this feature, include the end-user's email in the request payload by setting the `x-aim-user-email` header of your request.

View file

@ -164,7 +164,7 @@ curl -i http://localhost:4000/v1/chat/completions \
**Expected response**
Your response headers will incude `x-litellm-applied-guardrails` with the guardrail applied
Your response headers will include `x-litellm-applied-guardrails` with the guardrail applied
```
x-litellm-applied-guardrails: aporia-pre-guard

View file

@ -0,0 +1,279 @@
import TabItem from '@theme/TabItem';
import Tabs from '@theme/Tabs';
import Image from '@theme/IdealImage';
# [BETA] Unified File ID
Reuse the same 'file id' across different providers.
| Feature | Description | Comments |
| --- | --- | --- |
| Proxy | ✅ | |
| SDK | ❌ | Requires postgres DB for storing file ids |
| Available across all providers | ✅ | |
Limitations of LiteLLM Managed Files:
- Only works for `/chat/completions` requests.
- Assumes just 1 model configured per model_name.
Follow [here](https://github.com/BerriAI/litellm/discussions/9632) for multiple models, batches support.
### 1. Setup config.yaml
```
model_list:
- model_name: "gemini-2.0-flash"
litellm_params:
model: vertex_ai/gemini-2.0-flash
vertex_project: my-project-id
vertex_location: us-central1
- model_name: "gpt-4o-mini-openai"
litellm_params:
model: gpt-4o-mini
api_key: os.environ/OPENAI_API_KEY
```
### 2. Start proxy
```bash
litellm --config /path/to/config.yaml
```
### 3. Test it!
Specify `target_model_names` to use the same file id across different providers. This is the list of model_names set via config.yaml (or 'public_model_names' on UI).
```python
target_model_names="gpt-4o-mini-openai, gemini-2.0-flash" # 👈 Specify model_names
```
Check `/v1/models` to see the list of available model names for a key.
#### **Store a PDF file**
```python
from openai import OpenAI
client = OpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234", max_retries=0)
# Download and save the PDF locally
url = (
"https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf"
)
response = requests.get(url)
response.raise_for_status()
# Save the PDF locally
with open("2403.05530.pdf", "wb") as f:
f.write(response.content)
file = client.files.create(
file=open("2403.05530.pdf", "rb"),
purpose="user_data", # can be any openai 'purpose' value
extra_body={"target_model_names": "gpt-4o-mini-openai, gemini-2.0-flash"}, # 👈 Specify model_names
)
print(f"file id={file.id}")
```
#### **Use the same file id across different providers**
<Tabs>
<TabItem value="openai" label="OpenAI">
```python
completion = client.chat.completions.create(
model="gpt-4o-mini-openai",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this recording?"},
{
"type": "file",
"file": {
"file_id": file.id,
},
},
],
},
]
)
print(completion.choices[0].message)
```
</TabItem>
<TabItem value="vertex" label="Vertex AI">
```python
completion = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this recording?"},
{
"type": "file",
"file": {
"file_id": file.id,
},
},
],
},
]
)
print(completion.choices[0].message)
```
</TabItem>
</Tabs>
### Complete Example
```python
import base64
import requests
from openai import OpenAI
client = OpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234", max_retries=0)
# Download and save the PDF locally
url = (
"https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf"
)
response = requests.get(url)
response.raise_for_status()
# Save the PDF locally
with open("2403.05530.pdf", "wb") as f:
f.write(response.content)
# Read the local PDF file
file = client.files.create(
file=open("2403.05530.pdf", "rb"),
purpose="user_data", # can be any openai 'purpose' value
extra_body={"target_model_names": "gpt-4o-mini-openai, vertex_ai/gemini-2.0-flash"},
)
print(f"file.id: {file.id}") # 👈 Unified file id
## GEMINI CALL ###
completion = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this recording?"},
{
"type": "file",
"file": {
"file_id": file.id,
},
},
],
},
]
)
print(completion.choices[0].message)
### OPENAI CALL ###
completion = client.chat.completions.create(
model="gpt-4o-mini-openai",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this recording?"},
{
"type": "file",
"file": {
"file_id": file.id,
},
},
],
},
],
)
print(completion.choices[0].message)
```
### Supported Endpoints
#### Create a file - `/files`
```python
from openai import OpenAI
client = OpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234", max_retries=0)
# Download and save the PDF locally
url = (
"https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf"
)
response = requests.get(url)
response.raise_for_status()
# Save the PDF locally
with open("2403.05530.pdf", "wb") as f:
f.write(response.content)
# Read the local PDF file
file = client.files.create(
file=open("2403.05530.pdf", "rb"),
purpose="user_data", # can be any openai 'purpose' value
extra_body={"target_model_names": "gpt-4o-mini-openai, vertex_ai/gemini-2.0-flash"},
)
```
#### Retrieve a file - `/files/{file_id}`
```python
client = OpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234", max_retries=0)
file = client.files.retrieve(file_id=file.id)
```
#### Delete a file - `/files/{file_id}/delete`
```python
client = OpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234", max_retries=0)
file = client.files.delete(file_id=file.id)
```
### FAQ
**1. Does LiteLLM store the file?**
No, LiteLLM does not store the file. It only stores the file id's in the postgres DB.
**2. How does LiteLLM know which file to use for a given file id?**
LiteLLM stores a mapping of the litellm file id to the model-specific file id in the postgres DB. When a request comes in, LiteLLM looks up the model-specific file id and uses it in the request to the provider.
**3. How do file deletions work?**
When a file is deleted, LiteLLM deletes the mapping from the postgres DB, and the files on each provider.
### Architecture
<Image img={require('../../img/managed_files_arch.png')} style={{ width: '800px', height: 'auto' }} />

View file

@ -277,7 +277,7 @@ Found under `kwargs["standard_logging_object"]`. This is a standard payload, log
## Langfuse
We will use the `--config` to set `litellm.success_callback = ["langfuse"]` this will log all successfull LLM calls to langfuse. Make sure to set `LANGFUSE_PUBLIC_KEY` and `LANGFUSE_SECRET_KEY` in your environment
We will use the `--config` to set `litellm.success_callback = ["langfuse"]` this will log all successful LLM calls to langfuse. Make sure to set `LANGFUSE_PUBLIC_KEY` and `LANGFUSE_SECRET_KEY` in your environment
**Step 1** Install langfuse
@ -534,15 +534,15 @@ print(response)
Use this if you want to control which LiteLLM-specific fields are logged as tags by the LiteLLM proxy. By default LiteLLM Proxy logs no LiteLLM-specific fields
| LiteLLM specific field | Description | Example Value |
|------------------------|-------------------------------------------------------|------------------------------------------------|
| `cache_hit` | Indicates whether a cache hit occured (True) or not (False) | `true`, `false` |
| `cache_key` | The Cache key used for this request | `d2b758c****`|
| `proxy_base_url` | The base URL for the proxy server, the value of env var `PROXY_BASE_URL` on your server | `https://proxy.example.com`|
| `user_api_key_alias` | An alias for the LiteLLM Virtual Key.| `prod-app1` |
| `user_api_key_user_id` | The unique ID associated with a user's API key. | `user_123`, `user_456` |
| `user_api_key_user_email` | The email associated with a user's API key. | `user@example.com`, `admin@example.com` |
| `user_api_key_team_alias` | An alias for a team associated with an API key. | `team_alpha`, `dev_team` |
| LiteLLM specific field | Description | Example Value |
|---------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|
| `cache_hit` | Indicates whether a cache hit occurred (True) or not (False) | `true`, `false` |
| `cache_key` | The Cache key used for this request | `d2b758c****` |
| `proxy_base_url` | The base URL for the proxy server, the value of env var `PROXY_BASE_URL` on your server | `https://proxy.example.com` |
| `user_api_key_alias` | An alias for the LiteLLM Virtual Key. | `prod-app1` |
| `user_api_key_user_id` | The unique ID associated with a user's API key. | `user_123`, `user_456` |
| `user_api_key_user_email` | The email associated with a user's API key. | `user@example.com`, `admin@example.com` |
| `user_api_key_team_alias` | An alias for a team associated with an API key. | `team_alpha`, `dev_team` |
**Usage**
@ -862,7 +862,7 @@ Add the following to your env
```shell
OTEL_EXPORTER="otlp_http"
OTEL_ENDPOINT="http:/0.0.0.0:4317"
OTEL_ENDPOINT="http://0.0.0.0:4317"
OTEL_HEADERS="x-honeycomb-team=<your-api-key>" # Optional
```
@ -1190,7 +1190,7 @@ We will use the `--config` to set
- `litellm.success_callback = ["s3"]`
This will log all successfull LLM calls to s3 Bucket
This will log all successful LLM calls to s3 Bucket
**Step 1** Set AWS Credentials in .env
@ -1279,7 +1279,7 @@ Log LLM Logs to [Azure Data Lake Storage](https://learn.microsoft.com/en-us/azur
| Property | Details |
|----------|---------|
| Description | Log LLM Input/Output to Azure Blob Storag (Bucket) |
| Description | Log LLM Input/Output to Azure Blob Storage (Bucket) |
| Azure Docs on Data Lake Storage | [Azure Data Lake Storage](https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction) |
@ -1360,7 +1360,7 @@ LiteLLM Supports logging to the following Datdog Integrations:
<Tabs>
<TabItem value="datadog" label="Datadog Logs">
We will use the `--config` to set `litellm.callbacks = ["datadog"]` this will log all successfull LLM calls to DataDog
We will use the `--config` to set `litellm.callbacks = ["datadog"]` this will log all successful LLM calls to DataDog
**Step 1**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
@ -1636,7 +1636,7 @@ class MyCustomHandler(CustomLogger):
litellm_params = kwargs.get("litellm_params", {})
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
# Acess Exceptions & Traceback
# Access Exceptions & Traceback
exception_event = kwargs.get("exception", None)
traceback_event = kwargs.get("traceback_exception", None)
@ -2205,7 +2205,7 @@ We will use the `--config` to set
- `litellm.success_callback = ["dynamodb"]`
- `litellm.dynamodb_table_name = "your-table-name"`
This will log all successfull LLM calls to DynamoDB
This will log all successful LLM calls to DynamoDB
**Step 1** Set AWS Credentials in .env
@ -2370,7 +2370,7 @@ litellm --test
[Athina](https://athina.ai/) allows you to log LLM Input/Output for monitoring, analytics, and observability.
We will use the `--config` to set `litellm.success_callback = ["athina"]` this will log all successfull LLM calls to athina
We will use the `--config` to set `litellm.success_callback = ["athina"]` this will log all successful LLM calls to athina
**Step 1** Set Athina API key
@ -2501,4 +2501,4 @@ litellm_settings:
:::info
`thresholds` are not required by default, but you can tune the values to your needs.
Default values is `4` for all categories
::: -->
::: -->

View file

@ -0,0 +1,108 @@
# Model Discovery
Use this to give users an accurate list of models available behind provider endpoint, when calling `/v1/models` for wildcard models.
## Supported Models
- Fireworks AI
- OpenAI
- Gemini
- LiteLLM Proxy
- Topaz
- Anthropic
- XAI
- VLLM
- Vertex AI
### Usage
**1. Setup config.yaml**
```yaml
model_list:
- model_name: xai/*
litellm_params:
model: xai/*
api_key: os.environ/XAI_API_KEY
litellm_settings:
check_provider_endpoint: true # 👈 Enable checking provider endpoint for wildcard models
```
**2. Start proxy**
```bash
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
**3. Call `/v1/models`**
```bash
curl -X GET "http://localhost:4000/v1/models" -H "Authorization: Bearer $LITELLM_KEY"
```
Expected response
```json
{
"data": [
{
"id": "xai/grok-2-1212",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
},
{
"id": "xai/grok-2-vision-1212",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
},
{
"id": "xai/grok-3-beta",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
},
{
"id": "xai/grok-3-fast-beta",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
},
{
"id": "xai/grok-3-mini-beta",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
},
{
"id": "xai/grok-3-mini-fast-beta",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
},
{
"id": "xai/grok-beta",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
},
{
"id": "xai/grok-vision-beta",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
},
{
"id": "xai/grok-2-image-1212",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
}
],
"object": "list"
}
```

View file

@ -61,7 +61,7 @@ CMD ["--port", "4000", "--config", "./proxy_server_config.yaml"]
## 3. Use Redis 'port','host', 'password'. NOT 'redis_url'
If you decide to use Redis, DO NOT use 'redis_url'. We recommend usig redis port, host, and password params.
If you decide to use Redis, DO NOT use 'redis_url'. We recommend using redis port, host, and password params.
`redis_url`is 80 RPS slower
@ -169,7 +169,7 @@ If you plan on using the DB, set a salt key for encrypting/decrypting variables
Do not change this after adding a model. It is used to encrypt / decrypt your LLM API Key credentials
We recommned - https://1password.com/password-generator/ password generator to get a random hash for litellm salt key.
We recommend - https://1password.com/password-generator/ password generator to get a random hash for litellm salt key.
```bash
export LITELLM_SALT_KEY="sk-1234"
@ -177,6 +177,50 @@ export LITELLM_SALT_KEY="sk-1234"
[**See Code**](https://github.com/BerriAI/litellm/blob/036a6821d588bd36d170713dcf5a72791a694178/litellm/proxy/common_utils/encrypt_decrypt_utils.py#L15)
## 9. Use `prisma migrate deploy`
Use this to handle db migrations across LiteLLM versions in production
<Tabs>
<TabItem value="env" label="ENV">
```bash
USE_PRISMA_MIGRATE="True"
```
</TabItem>
<TabItem value="cli" label="CLI">
```bash
litellm --use_prisma_migrate
```
</TabItem>
</Tabs>
Benefits:
The migrate deploy command:
- **Does not** issue a warning if an already applied migration is missing from migration history
- **Does not** detect drift (production database schema differs from migration history end state - for example, due to a hotfix)
- **Does not** reset the database or generate artifacts (such as Prisma Client)
- **Does not** rely on a shadow database
### How does LiteLLM handle DB migrations in production?
1. A new migration file is written to our `litellm-proxy-extras` package. [See all](https://github.com/BerriAI/litellm/tree/main/litellm-proxy-extras/litellm_proxy_extras/migrations)
2. The core litellm pip package is bumped to point to the new `litellm-proxy-extras` package. This ensures, older versions of LiteLLM will continue to use the old migrations. [See code](https://github.com/BerriAI/litellm/blob/52b35cd8093b9ad833987b24f494586a1e923209/pyproject.toml#L58)
3. When you upgrade to a new version of LiteLLM, the migration file is applied to the database. [See code](https://github.com/BerriAI/litellm/blob/52b35cd8093b9ad833987b24f494586a1e923209/litellm-proxy-extras/litellm_proxy_extras/utils.py#L42)
## Extras
### Expected Performance in Production

View file

@ -95,7 +95,14 @@ Use this for for tracking per [user, key, team, etc.](virtual_keys)
### Initialize Budget Metrics on Startup
If you want to initialize the key/team budget metrics on startup, you can set the `prometheus_initialize_budget_metrics` to `true` in the `config.yaml`
If you want litellm to emit the budget metrics for all keys, teams irrespective of whether they are getting requests or not, set `prometheus_initialize_budget_metrics` to `true` in the `config.yaml`
**How this works:**
- If the `prometheus_initialize_budget_metrics` is set to `true`
- Every 5 minutes litellm runs a cron job to read all keys, teams from the database
- It then emits the budget metrics for each key, team
- This is used to populate the budget metrics on the `/metrics` endpoint
```yaml
litellm_settings:

View file

@ -161,6 +161,83 @@ Here's the available UI roles for a LiteLLM Internal User:
- `internal_user`: can login, view/create/delete their own keys, view their spend. **Cannot** add new users.
- `internal_user_viewer`: can login, view their own keys, view their own spend. **Cannot** create/delete keys, add new users.
## Auto-add SSO users to teams
This walks through setting up sso auto-add for **Okta, Google SSO**
### Okta, Google SSO
1. Specify the JWT field that contains the team ids, that the user belongs to.
```yaml
general_settings:
master_key: sk-1234
litellm_jwtauth:
team_ids_jwt_field: "groups" # 👈 CAN BE ANY FIELD
```
This is assuming your SSO token looks like this. **If you need to inspect the JWT fields received from your SSO provider by LiteLLM, follow these instructions [here](#debugging-sso-jwt-fields)**
```
{
...,
"groups": ["team_id_1", "team_id_2"]
}
```
2. Create the teams on LiteLLM
```bash
curl -X POST '<PROXY_BASE_URL>/team/new' \
-H 'Authorization: Bearer <PROXY_MASTER_KEY>' \
-H 'Content-Type: application/json' \
-D '{
"team_alias": "team_1",
"team_id": "team_id_1" # 👈 MUST BE THE SAME AS THE SSO GROUP ID
}'
```
3. Test the SSO flow
Here's a walkthrough of [how it works](https://www.loom.com/share/8959be458edf41fd85937452c29a33f3?sid=7ebd6d37-569a-4023-866e-e0cde67cb23e)
### Microsoft Entra ID SSO group assignment
Follow this [tutorial for auto-adding sso users to teams with Microsoft Entra ID](https://docs.litellm.ai/docs/tutorials/msft_sso)
### Debugging SSO JWT fields
If you need to inspect the JWT fields received from your SSO provider by LiteLLM, follow these instructions. This guide walks you through setting up a debug callback to view the JWT data during the SSO process.
<Image img={require('../../img/debug_sso.png')} style={{ width: '500px', height: 'auto' }} />
<br />
1. Add `/sso/debug/callback` as a redirect URL in your SSO provider
In your SSO provider's settings, add the following URL as a new redirect (callback) URL:
```bash showLineNumbers title="Redirect URL"
http://<proxy_base_url>/sso/debug/callback
```
2. Navigate to the debug login page on your browser
Navigate to the following URL on your browser:
```bash showLineNumbers title="URL to navigate to"
https://<proxy_base_url>/sso/debug/login
```
This will initiate the standard SSO flow. You will be redirected to your SSO provider's login screen, and after successful authentication, you will be redirected back to LiteLLM's debug callback route.
3. View the JWT fields
Once redirected, you should see a page called "SSO Debug Information". This page displays the JWT fields received from your SSO provider (as shown in the image above)
## Advanced
### Setting custom logout URLs
@ -196,40 +273,26 @@ This budget does not apply to keys created under non-default teams.
[**Go Here**](./team_budgets.md)
### Auto-add SSO users to teams
### Set default params for new teams
1. Specify the JWT field that contains the team ids, that the user belongs to.
When you connect litellm to your SSO provider, litellm can auto-create teams. Use this to set the default `models`, `max_budget`, `budget_duration` for these auto-created teams.
```yaml
general_settings:
master_key: sk-1234
litellm_jwtauth:
team_ids_jwt_field: "groups" # 👈 CAN BE ANY FIELD
**How it works**
1. When litellm fetches `groups` from your SSO provider, it will check if the corresponding group_id exists as a `team_id` in litellm.
2. If the team_id does not exist, litellm will auto-create a team with the default params you've set.
3. If the team_id already exist, litellm will not apply any settings on the team.
**Usage**
```yaml showLineNumbers title="Default Params for new teams"
litellm_settings:
default_team_params: # Default Params to apply when litellm auto creates a team from SSO IDP provider
max_budget: 100 # Optional[float], optional): $100 budget for the team
budget_duration: 30d # Optional[str], optional): 30 days budget_duration for the team
models: ["gpt-3.5-turbo"] # Optional[List[str]], optional): models to be used by the team
```
This is assuming your SSO token looks like this:
```
{
...,
"groups": ["team_id_1", "team_id_2"]
}
```
2. Create the teams on LiteLLM
```bash
curl -X POST '<PROXY_BASE_URL>/team/new' \
-H 'Authorization: Bearer <PROXY_MASTER_KEY>' \
-H 'Content-Type: application/json' \
-D '{
"team_alias": "team_1",
"team_id": "team_id_1" # 👈 MUST BE THE SAME AS THE SSO GROUP ID
}'
```
3. Test the SSO flow
Here's a walkthrough of [how it works](https://www.loom.com/share/8959be458edf41fd85937452c29a33f3?sid=7ebd6d37-569a-4023-866e-e0cde67cb23e)
### Restrict Users from creating personal keys
@ -241,7 +304,7 @@ This will also prevent users from using their session tokens on the test keys ch
## **All Settings for Self Serve / SSO Flow**
```yaml
```yaml showLineNumbers title="All Settings for Self Serve / SSO Flow"
litellm_settings:
max_internal_user_budget: 10 # max budget for internal users
internal_user_budget_duration: "1mo" # reset every month
@ -251,6 +314,11 @@ litellm_settings:
max_budget: 100 # Optional[float], optional): $100 budget for a new SSO sign in user
budget_duration: 30d # Optional[str], optional): 30 days budget_duration for a new SSO sign in user
models: ["gpt-3.5-turbo"] # Optional[List[str]], optional): models to be used by a new SSO sign in user
default_team_params: # Default Params to apply when litellm auto creates a team from SSO IDP provider
max_budget: 100 # Optional[float], optional): $100 budget for the team
budget_duration: 30d # Optional[str], optional): 30 days budget_duration for the team
models: ["gpt-3.5-turbo"] # Optional[List[str]], optional): models to be used by the team
upperbound_key_generate_params: # Upperbound for /key/generate requests when self-serve flow is on

View file

@ -3,7 +3,7 @@
Set temporary budget increase for a LiteLLM Virtual Key. Use this if you get asked to increase the budget for a key temporarily.
| Heirarchy | Supported |
| Hierarchy | Supported |
|-----------|-----------|
| LiteLLM Virtual Key | ✅ |
| User | ❌ |

View file

@ -4,7 +4,7 @@ import TabItem from '@theme/TabItem';
# Adding LLM Credentials
You can add LLM provider credentials on the UI. Once you add credentials you can re-use them when adding new models
You can add LLM provider credentials on the UI. Once you add credentials you can reuse them when adding new models
## Add a credential + model

View file

@ -23,7 +23,7 @@ Requirements:
- ** Set on config.yaml** set your master key under `general_settings:master_key`, example below
- ** Set env variable** set `LITELLM_MASTER_KEY`
(the proxy Dockerfile checks if the `DATABASE_URL` is set and then intializes the DB connection)
(the proxy Dockerfile checks if the `DATABASE_URL` is set and then initializes the DB connection)
```shell
export DATABASE_URL=postgresql://<user>:<password>@<host>:<port>/<dbname>
@ -333,7 +333,7 @@ curl http://localhost:4000/v1/chat/completions \
**Expected Response**
Expect to see a successfull response from the litellm proxy since the key passed in `X-Litellm-Key` is valid
Expect to see a successful response from the litellm proxy since the key passed in `X-Litellm-Key` is valid
```shell
{"id":"chatcmpl-f9b2b79a7c30477ab93cd0e717d1773e","choices":[{"finish_reason":"stop","index":0,"message":{"content":"\n\nHello there, how may I assist you today?","role":"assistant","tool_calls":null,"function_call":null}}],"created":1677652288,"model":"gpt-3.5-turbo-0125","object":"chat.completion","system_fingerprint":"fp_44709d6fcb","usage":{"completion_tokens":12,"prompt_tokens":9,"total_tokens":21}
```

View file

@ -15,14 +15,17 @@ Supported Providers:
- Bedrock (Anthropic + Deepseek) (`bedrock/`)
- Vertex AI (Anthropic) (`vertexai/`)
- OpenRouter (`openrouter/`)
- XAI (`xai/`)
- Google AI Studio (`google/`)
- Vertex AI (`vertex_ai/`)
LiteLLM will standardize the `reasoning_content` in the response and `thinking_blocks` in the assistant message.
```python
```python title="Example response from litellm"
"message": {
...
"reasoning_content": "The capital of France is Paris.",
"thinking_blocks": [
"thinking_blocks": [ # only returned for Anthropic models
{
"type": "thinking",
"thinking": "The capital of France is Paris.",
@ -37,7 +40,7 @@ LiteLLM will standardize the `reasoning_content` in the response and `thinking_b
<Tabs>
<TabItem value="sdk" label="SDK">
```python
```python showLineNumbers
from litellm import completion
import os
@ -111,7 +114,7 @@ Here's how to use `thinking` blocks by Anthropic with tool calling.
<Tabs>
<TabItem value="sdk" label="SDK">
```python
```python showLineNumbers
litellm._turn_on_debug()
litellm.modify_params = True
model = "anthropic/claude-3-7-sonnet-20250219" # works across Anthropic, Bedrock, Vertex AI
@ -210,7 +213,7 @@ if tool_calls:
1. Setup config.yaml
```yaml
```yaml showLineNumbers
model_list:
- model_name: claude-3-7-sonnet-thinking
litellm_params:
@ -224,7 +227,7 @@ model_list:
2. Run proxy
```bash
```bash showLineNumbers
litellm --config config.yaml
# RUNNING on http://0.0.0.0:4000
@ -332,7 +335,7 @@ curl http://0.0.0.0:4000/v1/chat/completions \
Set `drop_params=True` to drop the 'thinking' blocks when swapping from Anthropic to Deepseek models. Suggest improvements to this approach [here](https://github.com/BerriAI/litellm/discussions/8927).
```python
```python showLineNumbers
litellm.drop_params = True # 👈 EITHER GLOBALLY or per request
# or per request
@ -373,7 +376,7 @@ You can also pass the `thinking` parameter to Anthropic models.
<Tabs>
<TabItem value="sdk" label="SDK">
```python
```python showLineNumbers
response = litellm.completion(
model="anthropic/claude-3-7-sonnet-20250219",
messages=[{"role": "user", "content": "What is the capital of France?"}],
@ -395,5 +398,92 @@ curl http://0.0.0.0:4000/v1/chat/completions \
}'
```
</TabItem>
</Tabs>
## Checking if a model supports reasoning
<Tabs>
<TabItem label="LiteLLM Python SDK" value="Python">
Use `litellm.supports_reasoning(model="")` -> returns `True` if model supports reasoning and `False` if not.
```python showLineNumbers title="litellm.supports_reasoning() usage"
import litellm
# Example models that support reasoning
assert litellm.supports_reasoning(model="anthropic/claude-3-7-sonnet-20250219") == True
assert litellm.supports_reasoning(model="deepseek/deepseek-chat") == True
# Example models that do not support reasoning
assert litellm.supports_reasoning(model="openai/gpt-3.5-turbo") == False
```
</TabItem>
<TabItem label="LiteLLM Proxy Server" value="proxy">
1. Define models that support reasoning in your `config.yaml`. You can optionally add `supports_reasoning: True` to the `model_info` if LiteLLM does not automatically detect it for your custom model.
```yaml showLineNumbers title="litellm proxy config.yaml"
model_list:
- model_name: claude-3-sonnet-reasoning
litellm_params:
model: anthropic/claude-3-7-sonnet-20250219
api_key: os.environ/ANTHROPIC_API_KEY
- model_name: deepseek-reasoning
litellm_params:
model: deepseek/deepseek-chat
api_key: os.environ/DEEPSEEK_API_KEY
# Example for a custom model where detection might be needed
- model_name: my-custom-reasoning-model
litellm_params:
model: openai/my-custom-model # Assuming it's OpenAI compatible
api_base: http://localhost:8000
api_key: fake-key
model_info:
supports_reasoning: True # Explicitly mark as supporting reasoning
```
2. Run the proxy server:
```bash showLineNumbers title="litellm --config config.yaml"
litellm --config config.yaml
```
3. Call `/model_group/info` to check if your model supports `reasoning`
```shell showLineNumbers title="curl /model_group/info"
curl -X 'GET' \
'http://localhost:4000/model_group/info' \
-H 'accept: application/json' \
-H 'x-api-key: sk-1234'
```
Expected Response
```json showLineNumbers title="response from /model_group/info"
{
"data": [
{
"model_group": "claude-3-sonnet-reasoning",
"providers": ["anthropic"],
"mode": "chat",
"supports_reasoning": true,
},
{
"model_group": "deepseek-reasoning",
"providers": ["deepseek"],
"supports_reasoning": true,
},
{
"model_group": "my-custom-reasoning-model",
"providers": ["openai"],
"supports_reasoning": true,
}
]
}
````
</TabItem>
</Tabs>

View file

@ -14,22 +14,22 @@ LiteLLM provides a BETA endpoint in the spec of [OpenAI's `/responses` API](http
| Fallbacks | ✅ | Works between supported models |
| Loadbalancing | ✅ | Works between supported models |
| Supported LiteLLM Versions | 1.63.8+ | |
| Supported LLM providers | `openai` | |
| Supported LLM providers | **All LiteLLM supported providers** | `openai`, `anthropic`, `bedrock`, `vertex_ai`, `gemini`, `azure`, `azure_ai` etc. |
## Usage
## Create a model response
### LiteLLM Python SDK
<Tabs>
<TabItem value="litellm-sdk" label="LiteLLM SDK">
<TabItem value="openai" label="OpenAI">
#### Non-streaming
```python
```python showLineNumbers title="OpenAI Non-streaming Response"
import litellm
# Non-streaming response
response = litellm.responses(
model="o1-pro",
model="openai/o1-pro",
input="Tell me a three sentence bedtime story about a unicorn.",
max_output_tokens=100
)
@ -38,12 +38,12 @@ print(response)
```
#### Streaming
```python
```python showLineNumbers title="OpenAI Streaming Response"
import litellm
# Streaming response
response = litellm.responses(
model="o1-pro",
model="openai/o1-pro",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
@ -53,58 +53,169 @@ for event in response:
```
</TabItem>
<TabItem value="proxy" label="OpenAI SDK with LiteLLM Proxy">
First, add this to your litellm proxy config.yaml:
```yaml
model_list:
- model_name: o1-pro
litellm_params:
model: openai/o1-pro
api_key: os.environ/OPENAI_API_KEY
```
Start your LiteLLM proxy:
```bash
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
Then use the OpenAI SDK pointed to your proxy:
<TabItem value="anthropic" label="Anthropic">
#### Non-streaming
```python
from openai import OpenAI
```python showLineNumbers title="Anthropic Non-streaming Response"
import litellm
import os
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Set API key
os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-api-key"
# Non-streaming response
response = client.responses.create(
model="o1-pro",
input="Tell me a three sentence bedtime story about a unicorn."
response = litellm.responses(
model="anthropic/claude-3-5-sonnet-20240620",
input="Tell me a three sentence bedtime story about a unicorn.",
max_output_tokens=100
)
print(response)
```
#### Streaming
```python
from openai import OpenAI
```python showLineNumbers title="Anthropic Streaming Response"
import litellm
import os
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Set API key
os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-api-key"
# Streaming response
response = client.responses.create(
model="o1-pro",
response = litellm.responses(
model="anthropic/claude-3-5-sonnet-20240620",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
<TabItem value="vertex" label="Vertex AI">
#### Non-streaming
```python showLineNumbers title="Vertex AI Non-streaming Response"
import litellm
import os
# Set credentials - Vertex AI uses application default credentials
# Run 'gcloud auth application-default login' to authenticate
os.environ["VERTEXAI_PROJECT"] = "your-gcp-project-id"
os.environ["VERTEXAI_LOCATION"] = "us-central1"
# Non-streaming response
response = litellm.responses(
model="vertex_ai/gemini-1.5-pro",
input="Tell me a three sentence bedtime story about a unicorn.",
max_output_tokens=100
)
print(response)
```
#### Streaming
```python showLineNumbers title="Vertex AI Streaming Response"
import litellm
import os
# Set credentials - Vertex AI uses application default credentials
# Run 'gcloud auth application-default login' to authenticate
os.environ["VERTEXAI_PROJECT"] = "your-gcp-project-id"
os.environ["VERTEXAI_LOCATION"] = "us-central1"
# Streaming response
response = litellm.responses(
model="vertex_ai/gemini-1.5-pro",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
<TabItem value="bedrock" label="AWS Bedrock">
#### Non-streaming
```python showLineNumbers title="AWS Bedrock Non-streaming Response"
import litellm
import os
# Set AWS credentials
os.environ["AWS_ACCESS_KEY_ID"] = "your-access-key-id"
os.environ["AWS_SECRET_ACCESS_KEY"] = "your-secret-access-key"
os.environ["AWS_REGION_NAME"] = "us-west-2" # or your AWS region
# Non-streaming response
response = litellm.responses(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
input="Tell me a three sentence bedtime story about a unicorn.",
max_output_tokens=100
)
print(response)
```
#### Streaming
```python showLineNumbers title="AWS Bedrock Streaming Response"
import litellm
import os
# Set AWS credentials
os.environ["AWS_ACCESS_KEY_ID"] = "your-access-key-id"
os.environ["AWS_SECRET_ACCESS_KEY"] = "your-secret-access-key"
os.environ["AWS_REGION_NAME"] = "us-west-2" # or your AWS region
# Streaming response
response = litellm.responses(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
<TabItem value="gemini" label="Google AI Studio">
#### Non-streaming
```python showLineNumbers title="Google AI Studio Non-streaming Response"
import litellm
import os
# Set API key for Google AI Studio
os.environ["GEMINI_API_KEY"] = "your-gemini-api-key"
# Non-streaming response
response = litellm.responses(
model="gemini/gemini-1.5-flash",
input="Tell me a three sentence bedtime story about a unicorn.",
max_output_tokens=100
)
print(response)
```
#### Streaming
```python showLineNumbers title="Google AI Studio Streaming Response"
import litellm
import os
# Set API key for Google AI Studio
os.environ["GEMINI_API_KEY"] = "your-gemini-api-key"
# Streaming response
response = litellm.responses(
model="gemini/gemini-1.5-flash",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
@ -115,3 +226,408 @@ for event in response:
</TabItem>
</Tabs>
### LiteLLM Proxy with OpenAI SDK
First, set up and start your LiteLLM proxy server.
```bash title="Start LiteLLM Proxy Server"
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
<Tabs>
<TabItem value="openai" label="OpenAI">
First, add this to your litellm proxy config.yaml:
```yaml showLineNumbers title="OpenAI Proxy Configuration"
model_list:
- model_name: openai/o1-pro
litellm_params:
model: openai/o1-pro
api_key: os.environ/OPENAI_API_KEY
```
#### Non-streaming
```python showLineNumbers title="OpenAI Proxy Non-streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Non-streaming response
response = client.responses.create(
model="openai/o1-pro",
input="Tell me a three sentence bedtime story about a unicorn."
)
print(response)
```
#### Streaming
```python showLineNumbers title="OpenAI Proxy Streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Streaming response
response = client.responses.create(
model="openai/o1-pro",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
<TabItem value="anthropic" label="Anthropic">
First, add this to your litellm proxy config.yaml:
```yaml showLineNumbers title="Anthropic Proxy Configuration"
model_list:
- model_name: anthropic/claude-3-5-sonnet-20240620
litellm_params:
model: anthropic/claude-3-5-sonnet-20240620
api_key: os.environ/ANTHROPIC_API_KEY
```
#### Non-streaming
```python showLineNumbers title="Anthropic Proxy Non-streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Non-streaming response
response = client.responses.create(
model="anthropic/claude-3-5-sonnet-20240620",
input="Tell me a three sentence bedtime story about a unicorn."
)
print(response)
```
#### Streaming
```python showLineNumbers title="Anthropic Proxy Streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Streaming response
response = client.responses.create(
model="anthropic/claude-3-5-sonnet-20240620",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
<TabItem value="vertex" label="Vertex AI">
First, add this to your litellm proxy config.yaml:
```yaml showLineNumbers title="Vertex AI Proxy Configuration"
model_list:
- model_name: vertex_ai/gemini-1.5-pro
litellm_params:
model: vertex_ai/gemini-1.5-pro
vertex_project: your-gcp-project-id
vertex_location: us-central1
```
#### Non-streaming
```python showLineNumbers title="Vertex AI Proxy Non-streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Non-streaming response
response = client.responses.create(
model="vertex_ai/gemini-1.5-pro",
input="Tell me a three sentence bedtime story about a unicorn."
)
print(response)
```
#### Streaming
```python showLineNumbers title="Vertex AI Proxy Streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Streaming response
response = client.responses.create(
model="vertex_ai/gemini-1.5-pro",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
<TabItem value="bedrock" label="AWS Bedrock">
First, add this to your litellm proxy config.yaml:
```yaml showLineNumbers title="AWS Bedrock Proxy Configuration"
model_list:
- model_name: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
litellm_params:
model: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID
aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY
aws_region_name: us-west-2
```
#### Non-streaming
```python showLineNumbers title="AWS Bedrock Proxy Non-streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Non-streaming response
response = client.responses.create(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
input="Tell me a three sentence bedtime story about a unicorn."
)
print(response)
```
#### Streaming
```python showLineNumbers title="AWS Bedrock Proxy Streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Streaming response
response = client.responses.create(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
<TabItem value="gemini" label="Google AI Studio">
First, add this to your litellm proxy config.yaml:
```yaml showLineNumbers title="Google AI Studio Proxy Configuration"
model_list:
- model_name: gemini/gemini-1.5-flash
litellm_params:
model: gemini/gemini-1.5-flash
api_key: os.environ/GEMINI_API_KEY
```
#### Non-streaming
```python showLineNumbers title="Google AI Studio Proxy Non-streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Non-streaming response
response = client.responses.create(
model="gemini/gemini-1.5-flash",
input="Tell me a three sentence bedtime story about a unicorn."
)
print(response)
```
#### Streaming
```python showLineNumbers title="Google AI Studio Proxy Streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Streaming response
response = client.responses.create(
model="gemini/gemini-1.5-flash",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
</Tabs>
## Supported Responses API Parameters
| Provider | Supported Parameters |
|----------|---------------------|
| `openai` | [All Responses API parameters are supported](https://github.com/BerriAI/litellm/blob/7c3df984da8e4dff9201e4c5353fdc7a2b441831/litellm/llms/openai/responses/transformation.py#L23) |
| `azure` | [All Responses API parameters are supported](https://github.com/BerriAI/litellm/blob/7c3df984da8e4dff9201e4c5353fdc7a2b441831/litellm/llms/openai/responses/transformation.py#L23) |
| `anthropic` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
| `bedrock` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
| `gemini` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
| `vertex_ai` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
| `azure_ai` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
| All other llm api providers | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
## Load Balancing with Routing Affinity
When using the Responses API with multiple deployments of the same model (e.g., multiple Azure OpenAI endpoints), LiteLLM provides routing affinity for conversations. This ensures that follow-up requests using a `previous_response_id` are routed to the same deployment that generated the original response.
#### Example Usage
<Tabs>
<TabItem value="python-sdk" label="Python SDK">
```python showLineNumbers title="Python SDK with Routing Affinity"
import litellm
# Set up router with multiple deployments of the same model
router = litellm.Router(
model_list=[
{
"model_name": "azure-gpt4-turbo",
"litellm_params": {
"model": "azure/gpt-4-turbo",
"api_key": "your-api-key-1",
"api_version": "2024-06-01",
"api_base": "https://endpoint1.openai.azure.com",
},
},
{
"model_name": "azure-gpt4-turbo",
"litellm_params": {
"model": "azure/gpt-4-turbo",
"api_key": "your-api-key-2",
"api_version": "2024-06-01",
"api_base": "https://endpoint2.openai.azure.com",
},
},
],
optional_pre_call_checks=["responses_api_deployment_check"],
)
# Initial request
response = await router.aresponses(
model="azure-gpt4-turbo",
input="Hello, who are you?",
truncation="auto",
)
# Store the response ID
response_id = response.id
# Follow-up request - will be automatically routed to the same deployment
follow_up = await router.aresponses(
model="azure-gpt4-turbo",
input="Tell me more about yourself",
truncation="auto",
previous_response_id=response_id # This ensures routing to the same deployment
)
```
</TabItem>
<TabItem value="proxy-server" label="Proxy Server">
#### 1. Setup routing affinity on proxy config.yaml
To enable routing affinity for Responses API in your LiteLLM proxy, set `optional_pre_call_checks: ["responses_api_deployment_check"]` in your proxy config.yaml.
```yaml showLineNumbers title="config.yaml with Responses API Routing Affinity"
model_list:
- model_name: azure-gpt4-turbo
litellm_params:
model: azure/gpt-4-turbo
api_key: your-api-key-1
api_version: 2024-06-01
api_base: https://endpoint1.openai.azure.com
- model_name: azure-gpt4-turbo
litellm_params:
model: azure/gpt-4-turbo
api_key: your-api-key-2
api_version: 2024-06-01
api_base: https://endpoint2.openai.azure.com
router_settings:
optional_pre_call_checks: ["responses_api_deployment_check"]
```
#### 2. Use the OpenAI Python SDK to make requests to LiteLLM Proxy
```python showLineNumbers title="OpenAI Client with Proxy Server"
from openai import OpenAI
client = OpenAI(
base_url="http://localhost:4000",
api_key="your-api-key"
)
# Initial request
response = client.responses.create(
model="azure-gpt4-turbo",
input="Hello, who are you?"
)
response_id = response.id
# Follow-up request - will be automatically routed to the same deployment
follow_up = client.responses.create(
model="azure-gpt4-turbo",
input="Tell me more about yourself",
previous_response_id=response_id # This ensures routing to the same deployment
)
```
</TabItem>
</Tabs>

View file

@ -994,16 +994,16 @@ litellm --health
## Logging Proxy Input/Output - OpenTelemetry
### Step 1 Start OpenTelemetry Collecter Docker Container
### Step 1 Start OpenTelemetry Collector Docker Container
This container sends logs to your selected destination
#### Install OpenTelemetry Collecter Docker Image
#### Install OpenTelemetry Collector Docker Image
```shell
docker pull otel/opentelemetry-collector:0.90.0
docker run -p 127.0.0.1:4317:4317 -p 127.0.0.1:55679:55679 otel/opentelemetry-collector:0.90.0
```
#### Set Destination paths on OpenTelemetry Collecter
#### Set Destination paths on OpenTelemetry Collector
Here's the OpenTelemetry yaml config to use with Elastic Search
```yaml
@ -1077,7 +1077,7 @@ general_settings:
LiteLLM will read the `OTEL_ENDPOINT` environment variable to send data to your OTEL collector
```python
os.environ['OTEL_ENDPOINT'] # defauls to 127.0.0.1:4317 if not provided
os.environ['OTEL_ENDPOINT'] # defaults to 127.0.0.1:4317 if not provided
```
#### Start LiteLLM Proxy
@ -1101,8 +1101,8 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
```
#### Test & View Logs on OpenTelemetry Collecter
On successfull logging you should be able to see this log on your `OpenTelemetry Collecter` Docker Container
#### Test & View Logs on OpenTelemetry Collector
On successful logging you should be able to see this log on your `OpenTelemetry Collector` Docker Container
```shell
Events:
SpanEvent #0
@ -1149,7 +1149,7 @@ Here's the log view on Elastic Search. You can see the request `input`, `output`
<Image img={require('../img/elastic_otel.png')} />
## Logging Proxy Input/Output - Langfuse
We will use the `--config` to set `litellm.success_callback = ["langfuse"]` this will log all successfull LLM calls to langfuse
We will use the `--config` to set `litellm.success_callback = ["langfuse"]` this will log all successful LLM calls to langfuse
**Step 1** Install langfuse

View file

@ -117,7 +117,7 @@ response = completion("command-nightly", messages)
"""
# qustions/logs you want to run the LLM on
# questions/logs you want to run the LLM on
questions = [
"what is litellm?",
"why should I use LiteLLM",

View file

@ -30,7 +30,7 @@ def inference(message, history):
yield partial_message
except Exception as e:
print("Exception encountered:", str(e))
yield f"An Error occured please 'Clear' the error and try your question again"
yield f"An Error occurred please 'Clear' the error and try your question again"
```
### Define Chat Interface

View file

@ -0,0 +1,162 @@
import Image from '@theme/IdealImage';
# Microsoft SSO: Sync Groups, Members with LiteLLM
Sync Microsoft SSO Groups, Members with LiteLLM Teams.
<Image img={require('../../img/litellm_entra_id.png')} style={{ width: '800px', height: 'auto' }} />
<br />
<br />
## Prerequisites
- An Azure Entra ID account with administrative access
- A LiteLLM Enterprise App set up in your Azure Portal
- Access to Microsoft Entra ID (Azure AD)
## Overview of this tutorial
1. Auto-Create Entra ID Groups on LiteLLM Teams
2. Sync Entra ID Team Memberships
3. Set default params for new teams and users auto-created on LiteLLM
## 1. Auto-Create Entra ID Groups on LiteLLM Teams
In this step, our goal is to have LiteLLM automatically create a new team on the LiteLLM DB when there is a new Group Added to the LiteLLM Enterprise App on Azure Entra ID.
### 1.1 Create a new group in Entra ID
Navigate to [your Azure Portal](https://portal.azure.com/) > Groups > New Group. Create a new group.
<Image img={require('../../img/entra_create_team.png')} style={{ width: '800px', height: 'auto' }} />
### 1.2 Assign the group to your LiteLLM Enterprise App
On your Azure Portal, navigate to `Enterprise Applications` > Select your litellm app
<Image img={require('../../img/msft_enterprise_app.png')} style={{ width: '800px', height: 'auto' }} />
<br />
<br />
Once you've selected your litellm app, click on `Users and Groups` > `Add user/group`
<Image img={require('../../img/msft_enterprise_assign_group.png')} style={{ width: '800px', height: 'auto' }} />
<br />
Now select the group you created in step 1.1. And add it to the LiteLLM Enterprise App. At this point we have added `Production LLM Evals Group` to the LiteLLM Enterprise App. The next steps is having LiteLLM automatically create the `Production LLM Evals Group` on the LiteLLM DB when a new user signs in.
<Image img={require('../../img/msft_enterprise_select_group.png')} style={{ width: '800px', height: 'auto' }} />
### 1.3 Sign in to LiteLLM UI via SSO
Sign into the LiteLLM UI via SSO. You should be redirected to the Entra ID SSO page. This SSO sign in flow will trigger LiteLLM to fetch the latest Groups and Members from Azure Entra ID.
<Image img={require('../../img/msft_sso_sign_in.png')} style={{ width: '800px', height: 'auto' }} />
### 1.4 Check the new team on LiteLLM UI
On the LiteLLM UI, Navigate to `Teams`, You should see the new team `Production LLM Evals Group` auto-created on LiteLLM.
<Image img={require('../../img/msft_auto_team.png')} style={{ width: '900px', height: 'auto' }} />
#### How this works
When a SSO user signs in to LiteLLM:
- LiteLLM automatically fetches the Groups under the LiteLLM Enterprise App
- It finds the Production LLM Evals Group assigned to the LiteLLM Enterprise App
- LiteLLM checks if this group's ID exists in the LiteLLM Teams Table
- Since the ID doesn't exist, LiteLLM automatically creates a new team with:
- Name: Production LLM Evals Group
- ID: Same as the Entra ID group's ID
## 2. Sync Entra ID Team Memberships
In this step, we will have LiteLLM automatically add a user to the `Production LLM Evals` Team on the LiteLLM DB when a new user is added to the `Production LLM Evals` Group in Entra ID.
### 2.1 Navigate to the `Production LLM Evals` Group in Entra ID
Navigate to the `Production LLM Evals` Group in Entra ID.
<Image img={require('../../img/msft_member_1.png')} style={{ width: '800px', height: 'auto' }} />
### 2.2 Add a member to the group in Entra ID
Select `Members` > `Add members`
In this stage you should add the user you want to add to the `Production LLM Evals` Team.
<Image img={require('../../img/msft_member_2.png')} style={{ width: '800px', height: 'auto' }} />
### 2.3 Sign in as the new user on LiteLLM UI
Sign in as the new user on LiteLLM UI. You should be redirected to the Entra ID SSO page. This SSO sign in flow will trigger LiteLLM to fetch the latest Groups and Members from Azure Entra ID. During this step LiteLLM sync it's teams, team members with what is available from Entra ID
<Image img={require('../../img/msft_sso_sign_in.png')} style={{ width: '800px', height: 'auto' }} />
### 2.4 Check the team membership on LiteLLM UI
On the LiteLLM UI, Navigate to `Teams`, You should see the new team `Production LLM Evals Group`. Since your are now a member of the `Production LLM Evals Group` in Entra ID, you should see the new team `Production LLM Evals Group` on the LiteLLM UI.
<Image img={require('../../img/msft_member_3.png')} style={{ width: '900px', height: 'auto' }} />
## 3. Set default params for new teams auto-created on LiteLLM
Since litellm auto creates a new team on the LiteLLM DB when there is a new Group Added to the LiteLLM Enterprise App on Azure Entra ID, we can set default params for new teams created.
This allows you to set a default budget, models, etc for new teams created.
### 3.1 Set `default_team_params` on litellm
Navigate to your litellm config file and set the following params
```yaml showLineNumbers title="litellm config with default_team_params"
litellm_settings:
default_team_params: # Default Params to apply when litellm auto creates a team from SSO IDP provider
max_budget: 100 # Optional[float], optional): $100 budget for the team
budget_duration: 30d # Optional[str], optional): 30 days budget_duration for the team
models: ["gpt-3.5-turbo"] # Optional[List[str]], optional): models to be used by the team
```
### 3.2 Auto-create a new team on LiteLLM
- In this step you should add a new group to the LiteLLM Enterprise App on Azure Entra ID (like we did in step 1.1). We will call this group `Default LiteLLM Prod Team` on Azure Entra ID.
- Start litellm proxy server with your config
- Sign into LiteLLM UI via SSO
- Navigate to `Teams` and you should see the new team `Default LiteLLM Prod Team` auto-created on LiteLLM
- Note LiteLLM will set the default params for this new team.
<Image img={require('../../img/msft_default_settings.png')} style={{ width: '900px', height: 'auto' }} />
## Video Walkthrough
This walks through setting up sso auto-add for **Microsoft Entra ID**
Follow along this video for a walkthrough of how to set this up with Microsoft Entra ID
<iframe width="840" height="500" src="https://www.loom.com/embed/ea711323aa9a496d84a01fd7b2a12f54?sid=c53e238c-5bfd-4135-b8fb-b5b1a08632cf" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe>

View file

@ -0,0 +1,146 @@
import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Using LiteLLM with OpenAI Codex
This guide walks you through connecting OpenAI Codex to LiteLLM. Using LiteLLM with Codex allows teams to:
- Access 100+ LLMs through the Codex interface
- Use powerful models like Gemini through a familiar interface
- Track spend and usage with LiteLLM's built-in analytics
- Control model access with virtual keys
<Image img={require('../../img/litellm_codex.gif')} />
## Quickstart
:::info
Requires LiteLLM v1.66.3.dev5 and higher
:::
Make sure to set up LiteLLM with the [LiteLLM Getting Started Guide](../proxy/docker_quick_start.md).
## 1. Install OpenAI Codex
Install the OpenAI Codex CLI tool globally using npm:
<Tabs>
<TabItem value="npm" label="npm">
```bash showLineNumbers
npm i -g @openai/codex
```
</TabItem>
<TabItem value="yarn" label="yarn">
```bash showLineNumbers
yarn global add @openai/codex
```
</TabItem>
</Tabs>
## 2. Start LiteLLM Proxy
<Tabs>
<TabItem value="docker" label="Docker">
```bash showLineNumbers
docker run \
-v $(pwd)/litellm_config.yaml:/app/config.yaml \
-p 4000:4000 \
ghcr.io/berriai/litellm:main-latest \
--config /app/config.yaml
```
</TabItem>
<TabItem value="pip" label="LiteLLM CLI">
```bash showLineNumbers
litellm --config /path/to/config.yaml
```
</TabItem>
</Tabs>
LiteLLM should now be running on [http://localhost:4000](http://localhost:4000)
## 3. Configure LiteLLM for Model Routing
Ensure your LiteLLM Proxy is properly configured to route to your desired models. Create a `litellm_config.yaml` file with the following content:
```yaml showLineNumbers
model_list:
- model_name: o3-mini
litellm_params:
model: openai/o3-mini
api_key: os.environ/OPENAI_API_KEY
- model_name: claude-3-7-sonnet-latest
litellm_params:
model: anthropic/claude-3-7-sonnet-latest
api_key: os.environ/ANTHROPIC_API_KEY
- model_name: gemini-2.0-flash
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
litellm_settings:
drop_params: true
```
This configuration enables routing to specific OpenAI, Anthropic, and Gemini models with explicit names.
## 4. Configure Codex to Use LiteLLM Proxy
Set the required environment variables to point Codex to your LiteLLM Proxy:
```bash
# Point to your LiteLLM Proxy server
export OPENAI_BASE_URL=http://0.0.0.0:4000
# Use your LiteLLM API key (if you've set up authentication)
export OPENAI_API_KEY="sk-1234"
```
## 5. Run Codex with Gemini
With everything configured, you can now run Codex with Gemini:
```bash showLineNumbers
codex --model gemini-2.0-flash --full-auto
```
<Image img={require('../../img/litellm_codex.gif')} />
The `--full-auto` flag allows Codex to automatically generate code without additional prompting.
## 6. Advanced Options
### Using Different Models
You can use any model configured in your LiteLLM proxy:
```bash
# Use Claude models
codex --model claude-3-7-sonnet-latest
# Use Google AI Studio Gemini models
codex --model gemini/gemini-2.0-flash
```
## Troubleshooting
- If you encounter connection issues, ensure your LiteLLM Proxy is running and accessible at the specified URL
- Verify your LiteLLM API key is valid if you're using authentication
- Check that your model routing configuration is correct
- For model-specific errors, ensure the model is properly configured in your LiteLLM setup
## Additional Resources
- [LiteLLM Docker Quick Start Guide](../proxy/docker_quick_start.md)
- [OpenAI Codex GitHub Repository](https://github.com/openai/codex)
- [LiteLLM Virtual Keys and Authentication](../proxy/virtual_keys.md)

View file

@ -0,0 +1,128 @@
import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Auto-Inject Prompt Caching Checkpoints
Reduce costs by up to 90% by using LiteLLM to auto-inject prompt caching checkpoints.
<Image img={require('../../img/auto_prompt_caching.png')} style={{ width: '800px', height: 'auto' }} />
## How it works
LiteLLM can automatically inject prompt caching checkpoints into your requests to LLM providers. This allows:
- **Cost Reduction**: Long, static parts of your prompts can be cached to avoid repeated processing
- **No need to modify your application code**: You can configure the auto-caching behavior in the LiteLLM UI or in the `litellm config.yaml` file.
## Configuration
You need to specify `cache_control_injection_points` in your model configuration. This tells LiteLLM:
1. Where to add the caching directive (`location`)
2. Which message to target (`role`)
LiteLLM will then automatically add a `cache_control` directive to the specified messages in your requests:
```json
"cache_control": {
"type": "ephemeral"
}
```
## Usage Example
In this example, we'll configure caching for system messages by adding the directive to all messages with `role: system`.
<Tabs>
<TabItem value="litellm config.yaml" label="litellm config.yaml">
```yaml showLineNumbers title="litellm config.yaml"
model_list:
- model_name: anthropic-auto-inject-cache-system-message
litellm_params:
model: anthropic/claude-3-5-sonnet-20240620
api_key: os.environ/ANTHROPIC_API_KEY
cache_control_injection_points:
- location: message
role: system
```
</TabItem>
<TabItem value="UI" label="LiteLLM UI">
On the LiteLLM UI, you can specify the `cache_control_injection_points` in the `Advanced Settings` tab when adding a model.
<Image img={require('../../img/ui_auto_prompt_caching.png')}/>
</TabItem>
</Tabs>
## Detailed Example
### 1. Original Request to LiteLLM
In this example, we have a very long, static system message and a varying user message. It's efficient to cache the system message since it rarely changes.
```json
{
"messages": [
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are a helpful assistant. This is a set of very long instructions that you will follow. Here is a legal document that you will use to answer the user's question."
}
]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is the main topic of this legal document?"
}
]
}
]
}
```
### 2. LiteLLM's Modified Request
LiteLLM auto-injects the caching directive into the system message based on our configuration:
```json
{
"messages": [
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are a helpful assistant. This is a set of very long instructions that you will follow. Here is a legal document that you will use to answer the user's question.",
"cache_control": {"type": "ephemeral"}
}
]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is the main topic of this legal document?"
}
]
}
]
}
```
When the model provider processes this request, it will recognize the caching directive and only process the system message once, caching it for subsequent requests.

View file

@ -0,0 +1,74 @@
import Image from '@theme/IdealImage';
# SCIM with LiteLLM
Enables identity providers (Okta, Azure AD, OneLogin, etc.) to automate user and team (group) provisioning, updates, and deprovisioning on LiteLLM.
This tutorial will walk you through the steps to connect your IDP to LiteLLM SCIM Endpoints.
### Supported SSO Providers for SCIM
Below is a list of supported SSO providers for connecting to LiteLLM SCIM Endpoints.
- Microsoft Entra ID (Azure AD)
- Okta
- Google Workspace
- OneLogin
- Keycloak
- Auth0
## 1. Get your SCIM Tenant URL and Bearer Token
On LiteLLM, navigate to the Settings > Admin Settings > SCIM. On this page you will create a SCIM Token, this allows your IDP to authenticate to litellm `/scim` endpoints.
<Image img={require('../../img/scim_2.png')} style={{ width: '800px', height: 'auto' }} />
## 2. Connect your IDP to LiteLLM SCIM Endpoints
On your IDP provider, navigate to your SSO application and select `Provisioning` > `New provisioning configuration`.
On this page, paste in your litellm scim tenant url and bearer token.
Once this is pasted in, click on `Test Connection` to ensure your IDP can authenticate to the LiteLLM SCIM endpoints.
<Image img={require('../../img/scim_4.png')} style={{ width: '800px', height: 'auto' }} />
## 3. Test SCIM Connection
### 3.1 Assign the group to your LiteLLM Enterprise App
On your IDP Portal, navigate to `Enterprise Applications` > Select your litellm app
<Image img={require('../../img/msft_enterprise_app.png')} style={{ width: '800px', height: 'auto' }} />
<br />
<br />
Once you've selected your litellm app, click on `Users and Groups` > `Add user/group`
<Image img={require('../../img/msft_enterprise_assign_group.png')} style={{ width: '800px', height: 'auto' }} />
<br />
Now select the group you created in step 1.1. And add it to the LiteLLM Enterprise App. At this point we have added `Production LLM Evals Group` to the LiteLLM Enterprise App. The next step is having LiteLLM automatically create the `Production LLM Evals Group` on the LiteLLM DB when a new user signs in.
<Image img={require('../../img/msft_enterprise_select_group.png')} style={{ width: '800px', height: 'auto' }} />
### 3.2 Sign in to LiteLLM UI via SSO
Sign into the LiteLLM UI via SSO. You should be redirected to the Entra ID SSO page. This SSO sign in flow will trigger LiteLLM to fetch the latest Groups and Members from Azure Entra ID.
<Image img={require('../../img/msft_sso_sign_in.png')} style={{ width: '800px', height: 'auto' }} />
### 3.3 Check the new team on LiteLLM UI
On the LiteLLM UI, Navigate to `Teams`, You should see the new team `Production LLM Evals Group` auto-created on LiteLLM.
<Image img={require('../../img/msft_auto_team.png')} style={{ width: '900px', height: 'auto' }} />

View file

@ -0,0 +1,145 @@
import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# [Beta] Routing based on request metadata
Create routing rules based on request metadata.
## Setup
Add the following to your litellm proxy config yaml file.
```yaml showLineNumbers title="litellm proxy config.yaml"
router_settings:
enable_tag_filtering: True # 👈 Key Change
```
## 1. Create a tag
On the LiteLLM UI, navigate to Experimental > Tag Management > Create Tag.
Create a tag called `private-data` and only select the allowed models for requests with this tag. Once created, you will see the tag in the Tag Management page.
<Image img={require('../../img/tag_create.png')} style={{ width: '800px', height: 'auto' }} />
## 2. Test Tag Routing
Now we will test the tag based routing rules.
### 2.1 Invalid model
This request will fail since we send `tags=private-data` but the model `gpt-4o` is not in the allowed models for the `private-data` tag.
<Image img={require('../../img/tag_invalid.png')} style={{ width: '800px', height: 'auto' }} />
<br />
Here is an example sending the same request using the OpenAI Python SDK.
<Tabs>
<TabItem value="python" label="OpenAI Python SDK">
```python showLineNumbers
from openai import OpenAI
client = OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000/v1/"
)
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "user", "content": "Hello, how are you?"}
],
extra_body={
"tags": "private-data"
}
)
```
</TabItem>
<TabItem value="curl" label="cURL">
```bash
curl -L -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gpt-4o",
"messages": [
{
"role": "user",
"content": "Hello, how are you?"
}
],
"tags": "private-data"
}'
```
</TabItem>
</Tabs>
<br />
### 2.2 Valid model
This request will succeed since we send `tags=private-data` and the model `us.anthropic.claude-3-7-sonnet-20250219-v1:0` is in the allowed models for the `private-data` tag.
<Image img={require('../../img/tag_valid.png')} style={{ width: '800px', height: 'auto' }} />
Here is an example sending the same request using the OpenAI Python SDK.
<Tabs>
<TabItem value="python" label="OpenAI Python SDK">
```python showLineNumbers
from openai import OpenAI
client = OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000/v1/"
)
response = client.chat.completions.create(
model="us.anthropic.claude-3-7-sonnet-20250219-v1:0",
messages=[
{"role": "user", "content": "Hello, how are you?"}
],
extra_body={
"tags": "private-data"
}
)
```
</TabItem>
<TabItem value="curl" label="cURL">
```bash
curl -L -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "us.anthropic.claude-3-7-sonnet-20250219-v1:0",
"messages": [
{
"role": "user",
"content": "Hello, how are you?"
}
],
"tags": "private-data"
}'
```
</TabItem>
</Tabs>
## Additional Tag Features
- [Sending tags in request headers](https://docs.litellm.ai/docs/proxy/tag_routing#calling-via-request-header)
- [Tag based routing](https://docs.litellm.ai/docs/proxy/tag_routing)
- [Track spend per tag](cost_tracking#-custom-tags)
- [Setup Budgets per Virtual Key, Team](users)

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 167 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 180 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 120 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 141 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 292 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 277 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 245 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 296 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 274 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 186 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 818 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 325 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 182 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 264 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 326 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 207 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 268 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 999 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 488 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 204 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 244 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 380 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 231 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 261 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 413 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 274 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 250 KiB

Some files were not shown because too many files have changed in this diff Show more