litellm-mirror/docs/my-website/docs/proxy/caching.md
Ishaan Jaff d1ba04d9d9
[Feature]: Redis Caching - Allow setting a namespace for redis cache (#8624)
* use _add_namespace_to_cache_key

* fix cache_control_args

* test_redis_caching_multiple_namespaces

* test_add_namespace_to_cache_key

* test_redis_caching_multiple_namespaces

* docs redis name space

* test_add_namespace_to_cache_key
2025-02-18 14:47:34 -08:00

23 KiB

import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem';

Caching

:::note

For OpenAI/Anthropic Prompt Caching, go here

:::

Cache LLM Responses. LiteLLM's caching system stores and reuses LLM responses to save costs and reduce latency. When you make the same request twice, the cached response is returned instead of calling the LLM API again.

Supported Caches

  • In Memory Cache
  • Redis Cache
  • Qdrant Semantic Cache
  • Redis Semantic Cache
  • s3 Bucket Cache

Quick Start

Caching can be enabled by adding the cache key in the config.yaml

Step 1: Add cache to the config.yaml

model_list:
  - model_name: gpt-3.5-turbo
    litellm_params:
      model: gpt-3.5-turbo
  - model_name: text-embedding-ada-002
    litellm_params:
      model: text-embedding-ada-002

litellm_settings:
  set_verbose: True
  cache: True          # set cache responses to True, litellm defaults to using a redis cache

[OPTIONAL] Step 1.5: Add redis namespaces, default ttl

Namespace

If you want to create some folder for your keys, you can set a namespace, like this:

litellm_settings:
  cache: true 
  cache_params:        # set cache params for redis
    type: redis
    namespace: "litellm.caching.caching"

and keys will be stored like:

litellm.caching.caching:<hash>

Redis Cluster

model_list:
  - model_name: "*"
    litellm_params:
      model: "*"


litellm_settings:
  cache: True
  cache_params:
    type: redis
    redis_startup_nodes: [{"host": "127.0.0.1", "port": "7001"}] 

You can configure redis cluster in your .env by setting REDIS_CLUSTER_NODES in your .env

Example REDIS_CLUSTER_NODES value

REDIS_CLUSTER_NODES = "[{"host": "127.0.0.1", "port": "7001"}, {"host": "127.0.0.1", "port": "7003"}, {"host": "127.0.0.1", "port": "7004"}, {"host": "127.0.0.1", "port": "7005"}, {"host": "127.0.0.1", "port": "7006"}, {"host": "127.0.0.1", "port": "7007"}]"

:::note

Example python script for setting redis cluster nodes in .env:

# List of startup nodes
startup_nodes = [
    {"host": "127.0.0.1", "port": "7001"},
    {"host": "127.0.0.1", "port": "7003"},
    {"host": "127.0.0.1", "port": "7004"},
    {"host": "127.0.0.1", "port": "7005"},
    {"host": "127.0.0.1", "port": "7006"},
    {"host": "127.0.0.1", "port": "7007"},
]

# set startup nodes in environment variables
os.environ["REDIS_CLUSTER_NODES"] = json.dumps(startup_nodes)
print("REDIS_CLUSTER_NODES", os.environ["REDIS_CLUSTER_NODES"])

:::

Redis Sentinel

model_list:
  - model_name: "*"
    litellm_params:
      model: "*"


litellm_settings:
  cache: true
  cache_params:
    type: "redis"
    service_name: "mymaster"
    sentinel_nodes: [["localhost", 26379]]
    sentinel_password: "password" # [OPTIONAL]

You can configure redis sentinel in your .env by setting REDIS_SENTINEL_NODES in your .env

Example REDIS_SENTINEL_NODES value

REDIS_SENTINEL_NODES='[["localhost", 26379]]'
REDIS_SERVICE_NAME = "mymaster"
REDIS_SENTINEL_PASSWORD = "password"

:::note

Example python script for setting redis cluster nodes in .env:

# List of startup nodes
sentinel_nodes = [["localhost", 26379]]

# set startup nodes in environment variables
os.environ["REDIS_SENTINEL_NODES"] = json.dumps(sentinel_nodes)
print("REDIS_SENTINEL_NODES", os.environ["REDIS_SENTINEL_NODES"])

:::

TTL

litellm_settings:
  cache: true 
  cache_params:        # set cache params for redis
    type: redis
    ttl: 600 # will be cached on redis for 600s
    # default_in_memory_ttl: Optional[float], default is None. time in seconds. 
    # default_in_redis_ttl: Optional[float], default is None. time in seconds. 

SSL

just set REDIS_SSL="True" in your .env, and LiteLLM will pick this up.

REDIS_SSL="True"

For quick testing, you can also use REDIS_URL, eg.:

REDIS_URL="rediss://.."

but we don't recommend using REDIS_URL in prod. We've noticed a performance difference between using it vs. redis_host, port, etc.

Step 2: Add Redis Credentials to .env

Set either REDIS_URL or the REDIS_HOST in your os environment, to enable caching.

REDIS_URL = ""        # REDIS_URL='redis://username:password@hostname:port/database'
## OR ## 
REDIS_HOST = ""       # REDIS_HOST='redis-18841.c274.us-east-1-3.ec2.cloud.redislabs.com'
REDIS_PORT = ""       # REDIS_PORT='18841'
REDIS_PASSWORD = ""   # REDIS_PASSWORD='liteLlmIsAmazing'

Additional kwargs
You can pass in any additional redis.Redis arg, by storing the variable + value in your os environment, like this:

REDIS_<redis-kwarg-name> = ""

See how it's read from the environment

Step 3: Run proxy with config

$ litellm --config /path/to/config.yaml

Caching can be enabled by adding the cache key in the config.yaml

Step 1: Add cache to the config.yaml

model_list:
  - model_name: fake-openai-endpoint
    litellm_params:
      model: openai/fake
      api_key: fake-key
      api_base: https://exampleopenaiendpoint-production.up.railway.app/
  - model_name: openai-embedding
    litellm_params:
      model: openai/text-embedding-3-small
      api_key: os.environ/OPENAI_API_KEY

litellm_settings:
  set_verbose: True
  cache: True          # set cache responses to True, litellm defaults to using a redis cache
  cache_params:
    type: qdrant-semantic
    qdrant_semantic_cache_embedding_model: openai-embedding # the model should be defined on the model_list
    qdrant_collection_name: test_collection
    qdrant_quantization_config: binary
    similarity_threshold: 0.8   # similarity threshold for semantic cache

Step 2: Add Qdrant Credentials to your .env

QDRANT_API_KEY = "16rJUMBRx*************"
QDRANT_API_BASE = "https://5392d382-45*********.cloud.qdrant.io"

Step 3: Run proxy with config

$ litellm --config /path/to/config.yaml

Step 4. Test it

curl -i http://localhost:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-1234" \
  -d '{
    "model": "fake-openai-endpoint",
    "messages": [
      {"role": "user", "content": "Hello"}
    ]
  }'

Expect to see x-litellm-semantic-similarity in the response headers when semantic caching is one

Step 1: Add cache to the config.yaml

model_list:
  - model_name: gpt-3.5-turbo
    litellm_params:
      model: gpt-3.5-turbo
  - model_name: text-embedding-ada-002
    litellm_params:
      model: text-embedding-ada-002

litellm_settings:
  set_verbose: True
  cache: True          # set cache responses to True
  cache_params:        # set cache params for s3
    type: s3
    s3_bucket_name: cache-bucket-litellm   # AWS Bucket Name for S3
    s3_region_name: us-west-2              # AWS Region Name for S3
    s3_aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID  # us os.environ/<variable name> to pass environment variables. This is AWS Access Key ID for S3
    s3_aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY  # AWS Secret Access Key for S3
    s3_endpoint_url: https://s3.amazonaws.com  # [OPTIONAL] S3 endpoint URL, if you want to use Backblaze/cloudflare s3 buckets

Step 2: Run proxy with config

$ litellm --config /path/to/config.yaml

Caching can be enabled by adding the cache key in the config.yaml

Step 1: Add cache to the config.yaml

model_list:
  - model_name: gpt-3.5-turbo
    litellm_params:
      model: gpt-3.5-turbo
  - model_name: azure-embedding-model
    litellm_params:
      model: azure/azure-embedding-model
      api_base: os.environ/AZURE_API_BASE
      api_key: os.environ/AZURE_API_KEY
      api_version: "2023-07-01-preview"

litellm_settings:
  set_verbose: True
  cache: True          # set cache responses to True, litellm defaults to using a redis cache
  cache_params:
    type: "redis-semantic"  
    similarity_threshold: 0.8   # similarity threshold for semantic cache
    redis_semantic_cache_embedding_model: azure-embedding-model # set this to a model_name set in model_list

Step 2: Add Redis Credentials to .env

Set either REDIS_URL or the REDIS_HOST in your os environment, to enable caching.

REDIS_URL = ""        # REDIS_URL='redis://username:password@hostname:port/database'
## OR ## 
REDIS_HOST = ""       # REDIS_HOST='redis-18841.c274.us-east-1-3.ec2.cloud.redislabs.com'
REDIS_PORT = ""       # REDIS_PORT='18841'
REDIS_PASSWORD = ""   # REDIS_PASSWORD='liteLlmIsAmazing'

Additional kwargs
You can pass in any additional redis.Redis arg, by storing the variable + value in your os environment, like this:

REDIS_<redis-kwarg-name> = ""

Step 3: Run proxy with config

$ litellm --config /path/to/config.yaml

Usage

Basic

Send the same request twice:

curl http://0.0.0.0:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
     "model": "gpt-3.5-turbo",
     "messages": [{"role": "user", "content": "write a poem about litellm!"}],
     "temperature": 0.7
   }'

curl http://0.0.0.0:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
     "model": "gpt-3.5-turbo",
     "messages": [{"role": "user", "content": "write a poem about litellm!"}],
     "temperature": 0.7
   }'

Send the same request twice:

curl --location 'http://0.0.0.0:4000/embeddings' \
  --header 'Content-Type: application/json' \
  --data ' {
  "model": "text-embedding-ada-002",
  "input": ["write a litellm poem"]
  }'

curl --location 'http://0.0.0.0:4000/embeddings' \
  --header 'Content-Type: application/json' \
  --data ' {
  "model": "text-embedding-ada-002",
  "input": ["write a litellm poem"]
  }'

Dynamic Cache Controls

Parameter Type Description
ttl Optional(int) Will cache the response for the user-defined amount of time (in seconds)
s-maxage Optional(int) Will only accept cached responses that are within user-defined range (in seconds)
no-cache Optional(bool) Will not store the response in cache.
no-store Optional(bool) Will not cache the response
namespace Optional(str) Will cache the response under a user-defined namespace

Each cache parameter can be controlled on a per-request basis. Here are examples for each parameter:

ttl

Set how long (in seconds) to cache a response.

from openai import OpenAI

client = OpenAI(
    api_key="your-api-key",
    base_url="http://0.0.0.0:4000"
)

chat_completion = client.chat.completions.create(
    messages=[{"role": "user", "content": "Hello"}],
    model="gpt-3.5-turbo",
    extra_body={
        "cache": {
            "ttl": 300  # Cache response for 5 minutes
        }
    }
)
curl http://localhost:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-1234" \
  -d '{
    "model": "gpt-3.5-turbo",
    "cache": {"ttl": 300},
    "messages": [
      {"role": "user", "content": "Hello"}
    ]
  }'

s-maxage

Only accept cached responses that are within the specified age (in seconds).

from openai import OpenAI

client = OpenAI(
    api_key="your-api-key",
    base_url="http://0.0.0.0:4000"
)

chat_completion = client.chat.completions.create(
    messages=[{"role": "user", "content": "Hello"}],
    model="gpt-3.5-turbo",
    extra_body={
        "cache": {
            "s-maxage": 600  # Only use cache if less than 10 minutes old
        }
    }
)
curl http://localhost:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-1234" \
  -d '{
    "model": "gpt-3.5-turbo",
    "cache": {"s-maxage": 600},
    "messages": [
      {"role": "user", "content": "Hello"}
    ]
  }'

no-cache

Force a fresh response, bypassing the cache.

from openai import OpenAI

client = OpenAI(
    api_key="your-api-key",
    base_url="http://0.0.0.0:4000"
)

chat_completion = client.chat.completions.create(
    messages=[{"role": "user", "content": "Hello"}],
    model="gpt-3.5-turbo",
    extra_body={
        "cache": {
            "no-cache": True  # Skip cache check, get fresh response
        }
    }
)
curl http://localhost:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-1234" \
  -d '{
    "model": "gpt-3.5-turbo",
    "cache": {"no-cache": true},
    "messages": [
      {"role": "user", "content": "Hello"}
    ]
  }'

no-store

Will not store the response in cache.

from openai import OpenAI

client = OpenAI(
    api_key="your-api-key",
    base_url="http://0.0.0.0:4000"
)

chat_completion = client.chat.completions.create(
    messages=[{"role": "user", "content": "Hello"}],
    model="gpt-3.5-turbo",
    extra_body={
        "cache": {
            "no-store": True  # Don't cache this response
        }
    }
)
curl http://localhost:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-1234" \
  -d '{
    "model": "gpt-3.5-turbo",
    "cache": {"no-store": true},
    "messages": [
      {"role": "user", "content": "Hello"}
    ]
  }'

namespace

Store the response under a specific cache namespace.

from openai import OpenAI

client = OpenAI(
    api_key="your-api-key",
    base_url="http://0.0.0.0:4000"
)

chat_completion = client.chat.completions.create(
    messages=[{"role": "user", "content": "Hello"}],
    model="gpt-3.5-turbo",
    extra_body={
        "cache": {
            "namespace": "my-custom-namespace"  # Store in custom namespace
        }
    }
)
curl http://localhost:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-1234" \
  -d '{
    "model": "gpt-3.5-turbo",
    "cache": {"namespace": "my-custom-namespace"},
    "messages": [
      {"role": "user", "content": "Hello"}
    ]
  }'

Set cache for proxy, but not on the actual llm api call

Use this if you just want to enable features like rate limiting, and loadbalancing across multiple instances.

Set supported_call_types: [] to disable caching on the actual api call.

litellm_settings:
  cache: True
  cache_params:
    type: redis
    supported_call_types: [] 

Debugging Caching - /cache/ping

LiteLLM Proxy exposes a /cache/ping endpoint to test if the cache is working as expected

Usage

curl --location 'http://0.0.0.0:4000/cache/ping'  -H "Authorization: Bearer sk-1234"

Expected Response - when cache healthy

{
    "status": "healthy",
    "cache_type": "redis",
    "ping_response": true,
    "set_cache_response": "success",
    "litellm_cache_params": {
        "supported_call_types": "['completion', 'acompletion', 'embedding', 'aembedding', 'atranscription', 'transcription']",
        "type": "redis",
        "namespace": "None"
    },
    "redis_cache_params": {
        "redis_client": "Redis<ConnectionPool<Connection<host=redis-16337.c322.us-east-1-2.ec2.cloud.redislabs.com,port=16337,db=0>>>",
        "redis_kwargs": "{'url': 'redis://:******@redis-16337.c322.us-east-1-2.ec2.cloud.redislabs.com:16337'}",
        "async_redis_conn_pool": "BlockingConnectionPool<Connection<host=redis-16337.c322.us-east-1-2.ec2.cloud.redislabs.com,port=16337,db=0>>",
        "redis_version": "7.2.0"
    }
}

Advanced

Control Call Types Caching is on for - (/chat/completion, /embeddings, etc.)

By default, caching is on for all call types. You can control which call types caching is on for by setting supported_call_types in cache_params

Cache will only be on for the call types specified in supported_call_types

litellm_settings:
  cache: True
  cache_params:
    type: redis
    supported_call_types: ["acompletion", "atext_completion", "aembedding", "atranscription"]
                          # /chat/completions, /completions, /embeddings, /audio/transcriptions

Set Cache Params on config.yaml

model_list:
  - model_name: gpt-3.5-turbo
    litellm_params:
      model: gpt-3.5-turbo
  - model_name: text-embedding-ada-002
    litellm_params:
      model: text-embedding-ada-002

litellm_settings:
  set_verbose: True
  cache: True          # set cache responses to True, litellm defaults to using a redis cache
  cache_params:         # cache_params are optional
    type: "redis"  # The type of cache to initialize. Can be "local" or "redis". Defaults to "local".
    host: "localhost"  # The host address for the Redis cache. Required if type is "redis".
    port: 6379  # The port number for the Redis cache. Required if type is "redis".
    password: "your_password"  # The password for the Redis cache. Required if type is "redis".
    
    # Optional configurations
    supported_call_types: ["acompletion", "atext_completion", "aembedding", "atranscription"]
                      # /chat/completions, /completions, /embeddings, /audio/transcriptions

Deleting Cache Keys - /cache/delete

In order to delete a cache key, send a request to /cache/delete with the keys you want to delete

Example

curl -X POST "http://0.0.0.0:4000/cache/delete" \
  -H "Authorization: Bearer sk-1234" \
  -d '{"keys": ["586bf3f3c1bf5aecb55bd9996494d3bbc69eb58397163add6d49537762a7548d", "key2"]}'
# {"status":"success"}

Viewing Cache Keys from responses

You can view the cache_key in the response headers, on cache hits the cache key is sent as the x-litellm-cache-key response headers

curl -i --location 'http://0.0.0.0:4000/chat/completions' \
    --header 'Authorization: Bearer sk-1234' \
    --header 'Content-Type: application/json' \
    --data '{
    "model": "gpt-3.5-turbo",
    "user": "ishan",
    "messages": [
        {
        "role": "user",
        "content": "what is litellm"
        }
    ],
}'

Response from litellm proxy

date: Thu, 04 Apr 2024 17:37:21 GMT
content-type: application/json
x-litellm-cache-key: 586bf3f3c1bf5aecb55bd9996494d3bbc69eb58397163add6d49537762a7548d

{
    "id": "chatcmpl-9ALJTzsBlXR9zTxPvzfFFtFbFtG6T",
    "choices": [
        {
            "finish_reason": "stop",
            "index": 0,
            "message": {
                "content": "I'm sorr.."
                "role": "assistant"
            }
        }
    ],
    "created": 1712252235,
}
             

**Set Caching Default Off - Opt in only **

  1. Set mode: default_off for caching
model_list:
  - model_name: fake-openai-endpoint
    litellm_params:
      model: openai/fake
      api_key: fake-key
      api_base: https://exampleopenaiendpoint-production.up.railway.app/

# default off mode
litellm_settings:
  set_verbose: True
  cache: True
  cache_params:
    mode: default_off # 👈 Key change cache is default_off
  1. Opting in to cache when cache is default off
import os
from openai import OpenAI

client = OpenAI(api_key=<litellm-api-key>, base_url="http://0.0.0.0:4000")

chat_completion = client.chat.completions.create(
    messages=[
        {
            "role": "user",
            "content": "Say this is a test",
        }
    ],
    model="gpt-3.5-turbo",
    extra_body = {        # OpenAI python accepts extra args in extra_body
        "cache": {"use-cache": True}
    }
)
curl http://localhost:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-1234" \
  -d '{
    "model": "gpt-3.5-turbo",
    "cache": {"use-cache": True}
    "messages": [
      {"role": "user", "content": "Say this is a test"}
    ]
  }'

Turn on batch_redis_requests

What it does? When a request is made:

  • Check if a key starting with litellm:<hashed_api_key>:<call_type>: exists in-memory, if no - get the last 100 cached requests for this key and store it

  • New requests are stored with this litellm:.. as the namespace

Why? Reduce number of redis GET requests. This improved latency by 46% in prod load tests.

Usage

litellm_settings:
  cache: true
  cache_params:
    type: redis
    ... # remaining redis args (host, port, etc.)
  callbacks: ["batch_redis_requests"] # 👈 KEY CHANGE!

SEE CODE

Supported cache_params on proxy config.yaml

cache_params:
  # ttl 
  ttl: Optional[float]
  default_in_memory_ttl: Optional[float]
  default_in_redis_ttl: Optional[float]

  # Type of cache (options: "local", "redis", "s3")
  type: s3

  # List of litellm call types to cache for
  # Options: "completion", "acompletion", "embedding", "aembedding"
  supported_call_types: ["acompletion", "atext_completion", "aembedding", "atranscription"]
                      # /chat/completions, /completions, /embeddings, /audio/transcriptions

  # Redis cache parameters
  host: localhost  # Redis server hostname or IP address
  port: "6379"  # Redis server port (as a string)
  password: secret_password  # Redis server password
  namespace: Optional[str] = None,
  

  # S3 cache parameters
  s3_bucket_name: your_s3_bucket_name  # Name of the S3 bucket
  s3_region_name: us-west-2  # AWS region of the S3 bucket
  s3_api_version: 2006-03-01  # AWS S3 API version
  s3_use_ssl: true  # Use SSL for S3 connections (options: true, false)
  s3_verify: true  # SSL certificate verification for S3 connections (options: true, false)
  s3_endpoint_url: https://s3.amazonaws.com  # S3 endpoint URL
  s3_aws_access_key_id: your_access_key  # AWS Access Key ID for S3
  s3_aws_secret_access_key: your_secret_key  # AWS Secret Access Key for S3
  s3_aws_session_token: your_session_token  # AWS Session Token for temporary credentials

Advanced - user api key cache ttl

Configure how long the in-memory cache stores the key object (prevents db requests)

general_settings:
  user_api_key_cache_ttl: <your-number> #time in seconds

By default this value is set to 60s.