litellm-mirror/docs/my-website/docs/proxy/caching.md
Ishaan Jaff d1ba04d9d9
[Feature]: Redis Caching - Allow setting a namespace for redis cache (#8624)
* use _add_namespace_to_cache_key

* fix cache_control_args

* test_redis_caching_multiple_namespaces

* test_add_namespace_to_cache_key

* test_redis_caching_multiple_namespaces

* docs redis name space

* test_add_namespace_to_cache_key
2025-02-18 14:47:34 -08:00

935 lines
No EOL
23 KiB
Markdown

import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Caching
:::note
For OpenAI/Anthropic Prompt Caching, go [here](../completion/prompt_caching.md)
:::
Cache LLM Responses. LiteLLM's caching system stores and reuses LLM responses to save costs and reduce latency. When you make the same request twice, the cached response is returned instead of calling the LLM API again.
### Supported Caches
- In Memory Cache
- Redis Cache
- Qdrant Semantic Cache
- Redis Semantic Cache
- s3 Bucket Cache
## Quick Start
<Tabs>
<TabItem value="redis" label="redis cache">
Caching can be enabled by adding the `cache` key in the `config.yaml`
#### Step 1: Add `cache` to the config.yaml
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
- model_name: text-embedding-ada-002
litellm_params:
model: text-embedding-ada-002
litellm_settings:
set_verbose: True
cache: True # set cache responses to True, litellm defaults to using a redis cache
```
#### [OPTIONAL] Step 1.5: Add redis namespaces, default ttl
#### Namespace
If you want to create some folder for your keys, you can set a namespace, like this:
```yaml
litellm_settings:
cache: true
cache_params: # set cache params for redis
type: redis
namespace: "litellm.caching.caching"
```
and keys will be stored like:
```
litellm.caching.caching:<hash>
```
#### Redis Cluster
<Tabs>
<TabItem value="redis-cluster-config" label="Set on config.yaml">
```yaml
model_list:
- model_name: "*"
litellm_params:
model: "*"
litellm_settings:
cache: True
cache_params:
type: redis
redis_startup_nodes: [{"host": "127.0.0.1", "port": "7001"}]
```
</TabItem>
<TabItem value="redis-env" label="Set on .env">
You can configure redis cluster in your .env by setting `REDIS_CLUSTER_NODES` in your .env
**Example `REDIS_CLUSTER_NODES`** value
```
REDIS_CLUSTER_NODES = "[{"host": "127.0.0.1", "port": "7001"}, {"host": "127.0.0.1", "port": "7003"}, {"host": "127.0.0.1", "port": "7004"}, {"host": "127.0.0.1", "port": "7005"}, {"host": "127.0.0.1", "port": "7006"}, {"host": "127.0.0.1", "port": "7007"}]"
```
:::note
Example python script for setting redis cluster nodes in .env:
```python
# List of startup nodes
startup_nodes = [
{"host": "127.0.0.1", "port": "7001"},
{"host": "127.0.0.1", "port": "7003"},
{"host": "127.0.0.1", "port": "7004"},
{"host": "127.0.0.1", "port": "7005"},
{"host": "127.0.0.1", "port": "7006"},
{"host": "127.0.0.1", "port": "7007"},
]
# set startup nodes in environment variables
os.environ["REDIS_CLUSTER_NODES"] = json.dumps(startup_nodes)
print("REDIS_CLUSTER_NODES", os.environ["REDIS_CLUSTER_NODES"])
```
:::
</TabItem>
</Tabs>
#### Redis Sentinel
<Tabs>
<TabItem value="redis-sentinel-config" label="Set on config.yaml">
```yaml
model_list:
- model_name: "*"
litellm_params:
model: "*"
litellm_settings:
cache: true
cache_params:
type: "redis"
service_name: "mymaster"
sentinel_nodes: [["localhost", 26379]]
sentinel_password: "password" # [OPTIONAL]
```
</TabItem>
<TabItem value="redis-env" label="Set on .env">
You can configure redis sentinel in your .env by setting `REDIS_SENTINEL_NODES` in your .env
**Example `REDIS_SENTINEL_NODES`** value
```env
REDIS_SENTINEL_NODES='[["localhost", 26379]]'
REDIS_SERVICE_NAME = "mymaster"
REDIS_SENTINEL_PASSWORD = "password"
```
:::note
Example python script for setting redis cluster nodes in .env:
```python
# List of startup nodes
sentinel_nodes = [["localhost", 26379]]
# set startup nodes in environment variables
os.environ["REDIS_SENTINEL_NODES"] = json.dumps(sentinel_nodes)
print("REDIS_SENTINEL_NODES", os.environ["REDIS_SENTINEL_NODES"])
```
:::
</TabItem>
</Tabs>
#### TTL
```yaml
litellm_settings:
cache: true
cache_params: # set cache params for redis
type: redis
ttl: 600 # will be cached on redis for 600s
# default_in_memory_ttl: Optional[float], default is None. time in seconds.
# default_in_redis_ttl: Optional[float], default is None. time in seconds.
```
#### SSL
just set `REDIS_SSL="True"` in your .env, and LiteLLM will pick this up.
```env
REDIS_SSL="True"
```
For quick testing, you can also use REDIS_URL, eg.:
```
REDIS_URL="rediss://.."
```
but we **don't** recommend using REDIS_URL in prod. We've noticed a performance difference between using it vs. redis_host, port, etc.
#### Step 2: Add Redis Credentials to .env
Set either `REDIS_URL` or the `REDIS_HOST` in your os environment, to enable caching.
```shell
REDIS_URL = "" # REDIS_URL='redis://username:password@hostname:port/database'
## OR ##
REDIS_HOST = "" # REDIS_HOST='redis-18841.c274.us-east-1-3.ec2.cloud.redislabs.com'
REDIS_PORT = "" # REDIS_PORT='18841'
REDIS_PASSWORD = "" # REDIS_PASSWORD='liteLlmIsAmazing'
```
**Additional kwargs**
You can pass in any additional redis.Redis arg, by storing the variable + value in your os environment, like this:
```shell
REDIS_<redis-kwarg-name> = ""
```
[**See how it's read from the environment**](https://github.com/BerriAI/litellm/blob/4d7ff1b33b9991dcf38d821266290631d9bcd2dd/litellm/_redis.py#L40)
#### Step 3: Run proxy with config
```shell
$ litellm --config /path/to/config.yaml
```
</TabItem>
<TabItem value="qdrant-semantic" label="Qdrant Semantic cache">
Caching can be enabled by adding the `cache` key in the `config.yaml`
#### Step 1: Add `cache` to the config.yaml
```yaml
model_list:
- model_name: fake-openai-endpoint
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
- model_name: openai-embedding
litellm_params:
model: openai/text-embedding-3-small
api_key: os.environ/OPENAI_API_KEY
litellm_settings:
set_verbose: True
cache: True # set cache responses to True, litellm defaults to using a redis cache
cache_params:
type: qdrant-semantic
qdrant_semantic_cache_embedding_model: openai-embedding # the model should be defined on the model_list
qdrant_collection_name: test_collection
qdrant_quantization_config: binary
similarity_threshold: 0.8 # similarity threshold for semantic cache
```
#### Step 2: Add Qdrant Credentials to your .env
```shell
QDRANT_API_KEY = "16rJUMBRx*************"
QDRANT_API_BASE = "https://5392d382-45*********.cloud.qdrant.io"
```
#### Step 3: Run proxy with config
```shell
$ litellm --config /path/to/config.yaml
```
#### Step 4. Test it
```shell
curl -i http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "fake-openai-endpoint",
"messages": [
{"role": "user", "content": "Hello"}
]
}'
```
**Expect to see `x-litellm-semantic-similarity` in the response headers when semantic caching is one**
</TabItem>
<TabItem value="s3" label="s3 cache">
#### Step 1: Add `cache` to the config.yaml
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
- model_name: text-embedding-ada-002
litellm_params:
model: text-embedding-ada-002
litellm_settings:
set_verbose: True
cache: True # set cache responses to True
cache_params: # set cache params for s3
type: s3
s3_bucket_name: cache-bucket-litellm # AWS Bucket Name for S3
s3_region_name: us-west-2 # AWS Region Name for S3
s3_aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID # us os.environ/<variable name> to pass environment variables. This is AWS Access Key ID for S3
s3_aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY # AWS Secret Access Key for S3
s3_endpoint_url: https://s3.amazonaws.com # [OPTIONAL] S3 endpoint URL, if you want to use Backblaze/cloudflare s3 buckets
```
#### Step 2: Run proxy with config
```shell
$ litellm --config /path/to/config.yaml
```
</TabItem>
<TabItem value="redis-sem" label="redis semantic cache">
Caching can be enabled by adding the `cache` key in the `config.yaml`
#### Step 1: Add `cache` to the config.yaml
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
- model_name: azure-embedding-model
litellm_params:
model: azure/azure-embedding-model
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: "2023-07-01-preview"
litellm_settings:
set_verbose: True
cache: True # set cache responses to True, litellm defaults to using a redis cache
cache_params:
type: "redis-semantic"
similarity_threshold: 0.8 # similarity threshold for semantic cache
redis_semantic_cache_embedding_model: azure-embedding-model # set this to a model_name set in model_list
```
#### Step 2: Add Redis Credentials to .env
Set either `REDIS_URL` or the `REDIS_HOST` in your os environment, to enable caching.
```shell
REDIS_URL = "" # REDIS_URL='redis://username:password@hostname:port/database'
## OR ##
REDIS_HOST = "" # REDIS_HOST='redis-18841.c274.us-east-1-3.ec2.cloud.redislabs.com'
REDIS_PORT = "" # REDIS_PORT='18841'
REDIS_PASSWORD = "" # REDIS_PASSWORD='liteLlmIsAmazing'
```
**Additional kwargs**
You can pass in any additional redis.Redis arg, by storing the variable + value in your os environment, like this:
```shell
REDIS_<redis-kwarg-name> = ""
```
#### Step 3: Run proxy with config
```shell
$ litellm --config /path/to/config.yaml
```
</TabItem>
</Tabs>
## Usage
### Basic
<Tabs>
<TabItem value="chat_completions" label="/chat/completions">
Send the same request twice:
```shell
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "write a poem about litellm!"}],
"temperature": 0.7
}'
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "write a poem about litellm!"}],
"temperature": 0.7
}'
```
</TabItem>
<TabItem value="embeddings" label="/embeddings">
Send the same request twice:
```shell
curl --location 'http://0.0.0.0:4000/embeddings' \
--header 'Content-Type: application/json' \
--data ' {
"model": "text-embedding-ada-002",
"input": ["write a litellm poem"]
}'
curl --location 'http://0.0.0.0:4000/embeddings' \
--header 'Content-Type: application/json' \
--data ' {
"model": "text-embedding-ada-002",
"input": ["write a litellm poem"]
}'
```
</TabItem>
</Tabs>
### Dynamic Cache Controls
| Parameter | Type | Description |
|-----------|------|-------------|
| `ttl` | *Optional(int)* | Will cache the response for the user-defined amount of time (in seconds) |
| `s-maxage` | *Optional(int)* | Will only accept cached responses that are within user-defined range (in seconds) |
| `no-cache` | *Optional(bool)* | Will not store the response in cache. |
| `no-store` | *Optional(bool)* | Will not cache the response |
| `namespace` | *Optional(str)* | Will cache the response under a user-defined namespace |
Each cache parameter can be controlled on a per-request basis. Here are examples for each parameter:
### `ttl`
Set how long (in seconds) to cache a response.
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python
from openai import OpenAI
client = OpenAI(
api_key="your-api-key",
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": "Hello"}],
model="gpt-3.5-turbo",
extra_body={
"cache": {
"ttl": 300 # Cache response for 5 minutes
}
}
)
```
</TabItem>
<TabItem value="curl" label="curl">
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-3.5-turbo",
"cache": {"ttl": 300},
"messages": [
{"role": "user", "content": "Hello"}
]
}'
```
</TabItem>
</Tabs>
### `s-maxage`
Only accept cached responses that are within the specified age (in seconds).
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python
from openai import OpenAI
client = OpenAI(
api_key="your-api-key",
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": "Hello"}],
model="gpt-3.5-turbo",
extra_body={
"cache": {
"s-maxage": 600 # Only use cache if less than 10 minutes old
}
}
)
```
</TabItem>
<TabItem value="curl" label="curl">
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-3.5-turbo",
"cache": {"s-maxage": 600},
"messages": [
{"role": "user", "content": "Hello"}
]
}'
```
</TabItem>
</Tabs>
### `no-cache`
Force a fresh response, bypassing the cache.
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python
from openai import OpenAI
client = OpenAI(
api_key="your-api-key",
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": "Hello"}],
model="gpt-3.5-turbo",
extra_body={
"cache": {
"no-cache": True # Skip cache check, get fresh response
}
}
)
```
</TabItem>
<TabItem value="curl" label="curl">
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-3.5-turbo",
"cache": {"no-cache": true},
"messages": [
{"role": "user", "content": "Hello"}
]
}'
```
</TabItem>
</Tabs>
### `no-store`
Will not store the response in cache.
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python
from openai import OpenAI
client = OpenAI(
api_key="your-api-key",
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": "Hello"}],
model="gpt-3.5-turbo",
extra_body={
"cache": {
"no-store": True # Don't cache this response
}
}
)
```
</TabItem>
<TabItem value="curl" label="curl">
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-3.5-turbo",
"cache": {"no-store": true},
"messages": [
{"role": "user", "content": "Hello"}
]
}'
```
</TabItem>
</Tabs>
### `namespace`
Store the response under a specific cache namespace.
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python
from openai import OpenAI
client = OpenAI(
api_key="your-api-key",
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": "Hello"}],
model="gpt-3.5-turbo",
extra_body={
"cache": {
"namespace": "my-custom-namespace" # Store in custom namespace
}
}
)
```
</TabItem>
<TabItem value="curl" label="curl">
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-3.5-turbo",
"cache": {"namespace": "my-custom-namespace"},
"messages": [
{"role": "user", "content": "Hello"}
]
}'
```
</TabItem>
</Tabs>
## Set cache for proxy, but not on the actual llm api call
Use this if you just want to enable features like rate limiting, and loadbalancing across multiple instances.
Set `supported_call_types: []` to disable caching on the actual api call.
```yaml
litellm_settings:
cache: True
cache_params:
type: redis
supported_call_types: []
```
## Debugging Caching - `/cache/ping`
LiteLLM Proxy exposes a `/cache/ping` endpoint to test if the cache is working as expected
**Usage**
```shell
curl --location 'http://0.0.0.0:4000/cache/ping' -H "Authorization: Bearer sk-1234"
```
**Expected Response - when cache healthy**
```shell
{
"status": "healthy",
"cache_type": "redis",
"ping_response": true,
"set_cache_response": "success",
"litellm_cache_params": {
"supported_call_types": "['completion', 'acompletion', 'embedding', 'aembedding', 'atranscription', 'transcription']",
"type": "redis",
"namespace": "None"
},
"redis_cache_params": {
"redis_client": "Redis<ConnectionPool<Connection<host=redis-16337.c322.us-east-1-2.ec2.cloud.redislabs.com,port=16337,db=0>>>",
"redis_kwargs": "{'url': 'redis://:******@redis-16337.c322.us-east-1-2.ec2.cloud.redislabs.com:16337'}",
"async_redis_conn_pool": "BlockingConnectionPool<Connection<host=redis-16337.c322.us-east-1-2.ec2.cloud.redislabs.com,port=16337,db=0>>",
"redis_version": "7.2.0"
}
}
```
## Advanced
### Control Call Types Caching is on for - (`/chat/completion`, `/embeddings`, etc.)
By default, caching is on for all call types. You can control which call types caching is on for by setting `supported_call_types` in `cache_params`
**Cache will only be on for the call types specified in `supported_call_types`**
```yaml
litellm_settings:
cache: True
cache_params:
type: redis
supported_call_types: ["acompletion", "atext_completion", "aembedding", "atranscription"]
# /chat/completions, /completions, /embeddings, /audio/transcriptions
```
### Set Cache Params on config.yaml
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
- model_name: text-embedding-ada-002
litellm_params:
model: text-embedding-ada-002
litellm_settings:
set_verbose: True
cache: True # set cache responses to True, litellm defaults to using a redis cache
cache_params: # cache_params are optional
type: "redis" # The type of cache to initialize. Can be "local" or "redis". Defaults to "local".
host: "localhost" # The host address for the Redis cache. Required if type is "redis".
port: 6379 # The port number for the Redis cache. Required if type is "redis".
password: "your_password" # The password for the Redis cache. Required if type is "redis".
# Optional configurations
supported_call_types: ["acompletion", "atext_completion", "aembedding", "atranscription"]
# /chat/completions, /completions, /embeddings, /audio/transcriptions
```
### Deleting Cache Keys - `/cache/delete`
In order to delete a cache key, send a request to `/cache/delete` with the `keys` you want to delete
Example
```shell
curl -X POST "http://0.0.0.0:4000/cache/delete" \
-H "Authorization: Bearer sk-1234" \
-d '{"keys": ["586bf3f3c1bf5aecb55bd9996494d3bbc69eb58397163add6d49537762a7548d", "key2"]}'
```
```shell
# {"status":"success"}
```
#### Viewing Cache Keys from responses
You can view the cache_key in the response headers, on cache hits the cache key is sent as the `x-litellm-cache-key` response headers
```shell
curl -i --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "gpt-3.5-turbo",
"user": "ishan",
"messages": [
{
"role": "user",
"content": "what is litellm"
}
],
}'
```
Response from litellm proxy
```json
date: Thu, 04 Apr 2024 17:37:21 GMT
content-type: application/json
x-litellm-cache-key: 586bf3f3c1bf5aecb55bd9996494d3bbc69eb58397163add6d49537762a7548d
{
"id": "chatcmpl-9ALJTzsBlXR9zTxPvzfFFtFbFtG6T",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "I'm sorr.."
"role": "assistant"
}
}
],
"created": 1712252235,
}
```
### **Set Caching Default Off - Opt in only **
1. **Set `mode: default_off` for caching**
```yaml
model_list:
- model_name: fake-openai-endpoint
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
# default off mode
litellm_settings:
set_verbose: True
cache: True
cache_params:
mode: default_off # 👈 Key change cache is default_off
```
2. **Opting in to cache when cache is default off**
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python
import os
from openai import OpenAI
client = OpenAI(api_key=<litellm-api-key>, base_url="http://0.0.0.0:4000")
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": "Say this is a test",
}
],
model="gpt-3.5-turbo",
extra_body = { # OpenAI python accepts extra args in extra_body
"cache": {"use-cache": True}
}
)
```
</TabItem>
<TabItem value="curl" label="curl">
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-3.5-turbo",
"cache": {"use-cache": True}
"messages": [
{"role": "user", "content": "Say this is a test"}
]
}'
```
</TabItem>
</Tabs>
### Turn on `batch_redis_requests`
**What it does?**
When a request is made:
- Check if a key starting with `litellm:<hashed_api_key>:<call_type>:` exists in-memory, if no - get the last 100 cached requests for this key and store it
- New requests are stored with this `litellm:..` as the namespace
**Why?**
Reduce number of redis GET requests. This improved latency by 46% in prod load tests.
**Usage**
```yaml
litellm_settings:
cache: true
cache_params:
type: redis
... # remaining redis args (host, port, etc.)
callbacks: ["batch_redis_requests"] # 👈 KEY CHANGE!
```
[**SEE CODE**](https://github.com/BerriAI/litellm/blob/main/litellm/proxy/hooks/batch_redis_get.py)
## Supported `cache_params` on proxy config.yaml
```yaml
cache_params:
# ttl
ttl: Optional[float]
default_in_memory_ttl: Optional[float]
default_in_redis_ttl: Optional[float]
# Type of cache (options: "local", "redis", "s3")
type: s3
# List of litellm call types to cache for
# Options: "completion", "acompletion", "embedding", "aembedding"
supported_call_types: ["acompletion", "atext_completion", "aembedding", "atranscription"]
# /chat/completions, /completions, /embeddings, /audio/transcriptions
# Redis cache parameters
host: localhost # Redis server hostname or IP address
port: "6379" # Redis server port (as a string)
password: secret_password # Redis server password
namespace: Optional[str] = None,
# S3 cache parameters
s3_bucket_name: your_s3_bucket_name # Name of the S3 bucket
s3_region_name: us-west-2 # AWS region of the S3 bucket
s3_api_version: 2006-03-01 # AWS S3 API version
s3_use_ssl: true # Use SSL for S3 connections (options: true, false)
s3_verify: true # SSL certificate verification for S3 connections (options: true, false)
s3_endpoint_url: https://s3.amazonaws.com # S3 endpoint URL
s3_aws_access_key_id: your_access_key # AWS Access Key ID for S3
s3_aws_secret_access_key: your_secret_key # AWS Secret Access Key for S3
s3_aws_session_token: your_session_token # AWS Session Token for temporary credentials
```
## Advanced - user api key cache ttl
Configure how long the in-memory cache stores the key object (prevents db requests)
```yaml
general_settings:
user_api_key_cache_ttl: <your-number> #time in seconds
```
By default this value is set to 60s.