litellm/docs/my-website/docs/providers/aws_sagemaker.md
2023-09-14 13:51:09 -07:00

1.3 KiB

AWS Sagemaker

LiteLLM supports Llama2 on Sagemaker

API KEYS

!pip install boto3 

os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""

Usage

import os 
from litellm import completion

os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""

response = completion(
            model="sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b", 
            messages=[{ "content": "Hello, how are you?","role": "user"}],
            temperature=0.2,
            max_tokens=80
        )

AWS Sagemaker Models

Here's an example of using a sagemaker model with LiteLLM

Model Name Function Call Required OS Variables
Llama2 7B completion(model='sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b, messages=messages) os.environ['AWS_ACCESS_KEY_ID'], os.environ['AWS_SECRET_ACCESS_KEY'], os.environ['AWS_REGION_NAME']
Custom LLM Endpoint completion(model='sagemaker/your-endpoint, messages=messages) os.environ['AWS_ACCESS_KEY_ID'], os.environ['AWS_SECRET_ACCESS_KEY'], os.environ['AWS_REGION_NAME']