litellm/docs/my-website/docs/providers/aws_sagemaker.md
2023-09-14 13:51:09 -07:00

36 lines
1.3 KiB
Markdown

# AWS Sagemaker
LiteLLM supports Llama2 on Sagemaker
### API KEYS
```python
!pip install boto3
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
```
### Usage
```python
import os
from litellm import completion
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
response = completion(
model="sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b",
messages=[{ "content": "Hello, how are you?","role": "user"}],
temperature=0.2,
max_tokens=80
)
```
### AWS Sagemaker Models
Here's an example of using a sagemaker model with LiteLLM
| Model Name | Function Call | Required OS Variables |
|------------------|--------------------------------------------|------------------------------------|
| Llama2 7B | `completion(model='sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b, messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |
| Custom LLM Endpoint | `completion(model='sagemaker/your-endpoint, messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']`, `os.environ['AWS_REGION_NAME']` |