# What does this PR do?
This PR adds two methods to the Inference API:
- `batch_completion`
- `batch_chat_completion`
The motivation is for evaluations targeting a local inference engine
(like meta-reference or vllm) where batch APIs provide for a substantial
amount of acceleration.
Why did I not add this to `Api.batch_inference` though? That just
resulted in a _lot_ more book-keeping given the structure of Llama
Stack. Had I done that, I would have needed to create a notion of a
"batch model" resource, setup routing based on that, etc. This does not
sound ideal.
So what's the future of the batch inference API? I am not sure. Maybe we
can keep it for true _asynchronous_ execution. So you can submit
requests, and it can return a Job instance, etc.
## Test Plan
Run meta-reference-gpu using:
```bash
export INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct
export INFERENCE_CHECKPOINT_DIR=../checkpoints/Llama-4-Scout-17B-16E-Instruct-20250331210000
export MODEL_PARALLEL_SIZE=4
export MAX_BATCH_SIZE=32
export MAX_SEQ_LEN=6144
LLAMA_MODELS_DEBUG=1 llama stack run meta-reference-gpu
```
Then run the batch inference test case.
# What does this PR do?
current text for 'llama stack build' and 'llama stack run' says that if
no argument is passed to '--image-name' that the active Conda
environment will be used
in reality, the active enviroment is used whether it is from conda,
virtualenv, etc.
## Test Plan
N/A
## Documentation
N/A
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
# What does this PR do?
Today, supervised_fine_tune itself and the `TrainingConfig` class have a
bunch of required fields that a provider implementation might not need.
for example, if a provider wants to handle hyperparameters in its
configuration as well as any type of dataset retrieval, optimizer or
LoRA config, a user will still need to pass in a virtually empty
`DataConfig`, `OptimizerConfig` and `AlgorithmConfig` in some cases.
Many of these fields are intended to work specifically with llama models
and knobs intended for customizing inline.
Adding remote post_training providers will require loosening these
arguments, or forcing users to pass in empty objects to satisfy the
pydantic models.
Signed-off-by: Charlie Doern <cdoern@redhat.com>
Small docs update and an update for `start-stack.sh` with missing color
and if statment logic.
# What does this PR do?
1. Makes a small change to start-stack.sh to resolve this error:
```cmd
/home/aireilly/.local/lib/python3.13/site-packages/llama_stack/distribution/start_stack.sh: line 76: [: missing ]'
```
2. Adds a missing $GREEN colour to start-stack.sh
3. Updated `docs/source/getting_started/detailed_tutorial.md` with some
small changes and corrections.
## Test Plan
Procedures described in
`docs/source/getting_started/detailed_tutorial.md` were verified on
Linux Fedora 41.
# What does this PR do?
This stubs in some OpenAI server-side compatibility with three new
endpoints:
/v1/openai/v1/models
/v1/openai/v1/completions
/v1/openai/v1/chat/completions
This gives common inference apps using OpenAI clients the ability to
talk to Llama Stack using an endpoint like
http://localhost:8321/v1/openai/v1 .
The two "v1" instances in there isn't awesome, but the thinking is that
Llama Stack's API is v1 and then our OpenAI compatibility layer is
compatible with OpenAI V1. And, some OpenAI clients implicitly assume
the URL ends with "v1", so this gives maximum compatibility.
The openai models endpoint is implemented in the routing layer, and just
returns all the models Llama Stack knows about.
The following providers should be working with the new OpenAI
completions and chat/completions API:
* remote::anthropic (untested)
* remote::cerebras-openai-compat (untested)
* remote::fireworks (tested)
* remote::fireworks-openai-compat (untested)
* remote::gemini (untested)
* remote::groq-openai-compat (untested)
* remote::nvidia (tested)
* remote::ollama (tested)
* remote::openai (untested)
* remote::passthrough (untested)
* remote::sambanova-openai-compat (untested)
* remote::together (tested)
* remote::together-openai-compat (untested)
* remote::vllm (tested)
The goal to support this for every inference provider - proxying
directly to the provider's OpenAI endpoint for OpenAI-compatible
providers. For providers that don't have an OpenAI-compatible API, we'll
add a mixin to translate incoming OpenAI requests to Llama Stack
inference requests and translate the Llama Stack inference responses to
OpenAI responses.
This is related to #1817 but is a bit larger in scope than just chat
completions, as I have real use-cases that need the older completions
API as well.
## Test Plan
### vLLM
```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```
### ollama
```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```
## Documentation
Run a Llama Stack distribution that uses one of the providers mentioned
in the list above. Then, use your favorite OpenAI client to send
completion or chat completion requests with the base_url set to
http://localhost:8321/v1/openai/v1 . Replace "localhost:8321" with the
host and port of your Llama Stack server, if different.
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
This PR adds unit tests for the NVIDIA Safety provider implementation.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
1. Ran `./scripts/unit-tests.sh
tests/unit/providers/nvidia/test_safety.py` from the root of the
project. Verified tests pass.
```
tests/unit/providers/nvidia/test_safety.py::TestNVIDIASafetyAdapter::test_init_nemo_guardrails Initializing NVIDIASafetyAdapter(http://nemo.test)...
PASSED
tests/unit/providers/nvidia/test_safety.py::TestNVIDIASafetyAdapter::test_init_nemo_guardrails_invalid_temperature Initializing NVIDIASafetyAdapter(http://nemo.test)...
PASSED
tests/unit/providers/nvidia/test_safety.py::TestNVIDIASafetyAdapter::test_register_shield_with_valid_id Initializing NVIDIASafetyAdapter(http://nemo.test)...
PASSED
tests/unit/providers/nvidia/test_safety.py::TestNVIDIASafetyAdapter::test_register_shield_without_id Initializing NVIDIASafetyAdapter(http://nemo.test)...
PASSED
tests/unit/providers/nvidia/test_safety.py::TestNVIDIASafetyAdapter::test_run_shield_allowed Initializing NVIDIASafetyAdapter(http://nemo.test)...
PASSED
tests/unit/providers/nvidia/test_safety.py::TestNVIDIASafetyAdapter::test_run_shield_blocked Initializing NVIDIASafetyAdapter(http://nemo.test)...
PASSED
tests/unit/providers/nvidia/test_safety.py::TestNVIDIASafetyAdapter::test_run_shield_http_error Initializing NVIDIASafetyAdapter(http://nemo.test)...
PASSED
tests/unit/providers/nvidia/test_safety.py::TestNVIDIASafetyAdapter::test_run_shield_not_found Initializing NVIDIASafetyAdapter(http://nemo.test)...
PASSED
```
[//]: # (## Documentation)
---------
Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
# What does this PR do?
The supervised_fine_tune method in NvidiaPostTrainingAdapter had some
extra args that aren't part of the post_training protocol, and these
extra args were causing FastAPI to throw an error when attempting to
stand up an endpoint that used this provider.
(Closes#1938)
## Test Plan
Before this change, bringing up a stack with the `nvidia` template
failed. Afterwards, it passes. I'm testing this like:
```
INFERENCE_MODEL="meta/llama-3.1-8b-instruct" \
llama stack build --template nvidia --image-type venv --run
```
I also ensured the nvidia/test_supervised_fine_tuning.py tests still
pass via:
```
python -m pytest \
tests/unit/providers/nvidia/test_supervised_fine_tuning.py
```
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
This PR makes it possible to switch between agentic and non-agentic RAG
when running the respective Playground page.
When non-agentic RAG is selected, user queries are answered by directly
querying the vector DB, augmenting the prompt, and sending the extended
prompt to the model via Inference API.
## Test Plan
- Launch the Playground and go to the RAG page;
- Select the vector DB ID;
- Adjust other configuration parameters if necessary;
- Set the radio button to Agent-based RAG;
- Send a message to the chat;
- The query will be answered by an agent using the knowledge search tool
as indicated by the output;
- Click the 'Clear Chat' button to make it possible to switch modes;
- Send a message to the chat again;
- This time, the query will be answered by the model directly as can be
deduced from the reply.
# What does this PR do?
closes https://github.com/meta-llama/llama-stack/issues/1586
this issue arises when loading an mcp_endpoint from run.yaml. the issue
does not manifest for mcp servers added via a running distro server. the
existing tests only cover the case of adding to a running server.
the code for loading run.yaml strips type information from mcp_endpoint,
passing `{"uri": ...}` instead of `URL(uri=...)` along to the resource
provider registration.
## Test Plan
1. run an mcp server
2. add an mcp tool config to the dev.py, e.g.
```
diff --git a/llama_stack/templates/dev/dev.py b/llama_stack/templates/dev/dev.py
index 69924acb..e0dc7189 100644
--- a/llama_stack/templates/dev/dev.py
+++ b/llama_stack/templates/dev/dev.py
@@ -6,6 +6,8 @@
from typing import List, Tuple
+from llama_stack.apis.common.content_types import URL
+
from llama_stack.apis.models.models import ModelType
from llama_stack.distribution.datatypes import (
ModelInput,
@@ -154,6 +156,11 @@ def get_distribution_template() -> DistributionTemplate:
toolgroup_id="builtin::code_interpreter",
provider_id="code-interpreter",
),
+ ToolGroupInput(
+ toolgroup_id="mcp::filesystem",
+ provider_id="model-context-protocol",
+ mcp_endpoint=URL(uri="http://localhost:8002/sse"),
+ ),
]
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
```
3. run distro_codegen.py
4. llama stack build --template dev --run
before this pr, the `llama stack run` would fail w/ `AttributeError:
'dict' object has no attribute 'uri'`, after it will succeed.
# What does this PR do?
While building the "experimental-post-training" distribution, we
encountered a version conflict between torchao with inference requiring
version 0.5.0 and training currently depending on version 0.8.0.
Resolves this error:
```
× No solution found when resolving dependencies:
╰─▶ Because you require torchao==0.5.0 and torchao==0.8.0, we can conclude that your requirements are unsatisfiable.
ERROR 2025-04-10 10:41:22,597 llama_stack.distribution.build:128 uncategorized: Failed to build target test with
return code 1
```
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
This PR fixes two issues with the RAG page of the Playground UI:
1. When the user modifies a configurable setting via a widget (e.g.,
system prompt, temperature, etc.), the agent is not recreated. Thus, the
change has no effect and the user gets no indication of that.
2. After the first issue is fixed, it becomes possible to recreate the
agent mid-conversation or even mid-generation. To mitigate this, widgets
related to agent configuration are now disabled when a conversation is
in progress (i.e., when the chat is non-empty). They are automatically
enabled again when the user resets the chat history.
## Test Plan
- Launch the Playground and go to the RAG page;
- Select the vector DB ID;
- Send a message to the agent via the chat;
- The widgets in charge of the agent parameters will become disabled at
this point;
- Send a second message asking the model about the content of the first
message;
- The reply will indicate that the two messages were sent over the same
session, that is, the agent was not recreated;
- Click the 'Clear Chat' button;
- All widgets will be enabled and a new agent will be created (which can
be validated by sending another message).
Mirror to https://github.com/meta-llama/llama-models/pull/324 with some
clean up
```
with-proxy pip install -e .
export INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct
export INFERENCE_CHECKPOINT_DIR=../checkpoints/Llama-4-Scout-17B-16E-Instruct
export QUANTIZATION_TYPE=int4_mixed
with-proxy llama stack build --run --template meta-reference-gpu
```
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
# What does this PR do?
* Manage UI deps in pyproject
* Use a new "ui" dep group to pull the deps with "uv"
* Simplify the run command
* Bump versions in requirements.txt
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
This PR adds the "TAVILY_SEARCH_API_KEY" option to the playground to
enable the use of the websearch tool.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
```
export TAVILY_SEARCH_API_KEY=***
streamlit run llama_stack/distribution/ui/app.py
```
Without this change the builtin websearch tool will fail due to missing
API key.
[//]: # (## Documentation)
Related to #1902
Signed-off-by: Michael Clifford <mcliffor@redhat.com>
# What does this PR do?
This PR adds an additional page to the playground called "Tools". This
page connects to a llama-stack server and lists all the available LLM
models, builtin tools and MCP tools in the sidebar. Users can select
whatever combination of model and tools they want from the sidebar for
their agent. Once the selections are made, users can chat with their
agent similarly to the RAG page and test out agent tool use.
closes#1902
## Test Plan
Ran the following commands with a llama-stack server and the updated
playground worked as expected.
```
export LLAMA_STACK_ENDPOINT="http://localhost:8321"
streamlit run llama_stack/distribution/ui/app.py
```
[//]: # (## Documentation)
Signed-off-by: Michael Clifford <mcliffor@redhat.com>
**What does this PR do?**
This PR fixes a build issue with the Containerfile caused by missing
requirement `llama-stack`. It updates the Containerfile to include the
necessary requirements and upgrades the Python version to ensure
successful builds.
**Test Plan**
The updated Containerfile has been tested, and the build now completes
successfully with the required dependencies included.
# What does this PR do?
Fixes issue #1537 that causes "500 Internal Server Error" when
unregistering a toolgroup
# (Closes#1537 )
## Test Plan
```console
$ pytest -s -v tests/integration/tool_runtime/test_registration.py --stack-config=ollama --env INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
INFO 2025-03-14 21:15:03,999 tests.integration.conftest:41 tests: Setting DISABLE_CODE_SANDBOX=1 for macOS
/opt/homebrew/lib/python3.10/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"
warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
===================================================== test session starts =====================================================
platform darwin -- Python 3.10.16, pytest-8.3.5, pluggy-1.5.0 -- /opt/homebrew/opt/python@3.10/bin/python3.10
cachedir: .pytest_cache
rootdir: /Users/paolo/Projects/aiplatform/llama-stack
configfile: pyproject.toml
plugins: asyncio-0.25.3, anyio-4.8.0
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 1 item
tests/integration/tool_runtime/test_registration.py::test_register_and_unregister_toolgroup[None-None-None-None-None] INFO 2025-03-14 21:15:04,478 llama_stack.providers.remote.inference.ollama.ollama:75 inference: checking
connectivity to Ollama at `http://localhost:11434`...
INFO 2025-03-14 21:15:05,350 llama_stack.providers.remote.inference.ollama.ollama:294 inference: Pulling embedding
model `all-minilm:latest` if necessary...
INFO: Started server process [78391]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
INFO: 127.0.0.1:57424 - "GET /sse HTTP/1.1" 200 OK
INFO: 127.0.0.1:57434 - "GET /sse HTTP/1.1" 200 OK
INFO 2025-03-14 21:15:16,129 mcp.client.sse:51 uncategorized: Connecting to SSE endpoint: http://localhost:8000/sse
INFO: 127.0.0.1:57445 - "GET /sse HTTP/1.1" 200 OK
INFO 2025-03-14 21:15:16,146 mcp.client.sse:71 uncategorized: Received endpoint URL:
http://localhost:8000/messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b
INFO 2025-03-14 21:15:16,147 mcp.client.sse:140 uncategorized: Starting post writer with endpoint URL:
http://localhost:8000/messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b
INFO: 127.0.0.1:57447 - "POST /messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b HTTP/1.1" 202 Accepted
INFO: 127.0.0.1:57447 - "POST /messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b HTTP/1.1" 202 Accepted
INFO: 127.0.0.1:57447 - "POST /messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b HTTP/1.1" 202 Accepted
INFO 2025-03-14 21:15:16,155 mcp.server.lowlevel.server:535 uncategorized: Processing request of type
ListToolsRequest
PASSED
=============================================== 1 passed, 4 warnings in 12.17s ================================================
```
---------
Signed-off-by: Paolo Dettori <dettori@us.ibm.com>
# What does this PR do?
closes#1853
## Test Plan
```
uv run llama stack build --image-type conda --image-name ollama --config llama_stack/templates/ollama/build.yaml
ollama pull llama3.2:3b
LLAMA_STACK_CONFIG=http://localhost:8321 uv run pytest tests/integration/inference/test_text_inference.py -v --text-model=llama3.2:3b
```
# What does this PR do?
Providers that live outside of the llama-stack codebase are now
supported.
A new property `external_providers_dir` has been added to the main
config and can be configured as follow:
```
external_providers_dir: /etc/llama-stack/providers.d/
```
Where the expected structure is:
```
providers.d/
inference/
custom_ollama.yaml
vllm.yaml
vector_io/
qdrant.yaml
```
Where `custom_ollama.yaml` is:
```
adapter:
adapter_type: custom_ollama
pip_packages: ["ollama", "aiohttp"]
config_class: llama_stack_ollama_provider.config.OllamaImplConfig
module: llama_stack_ollama_provider
api_dependencies: []
optional_api_dependencies: []
```
Obviously the package must be installed on the system, here is the
`llama_stack_ollama_provider` example:
```
$ uv pip show llama-stack-ollama-provider
Using Python 3.10.16 environment at: /Users/leseb/Documents/AI/llama-stack/.venv
Name: llama-stack-ollama-provider
Version: 0.1.0
Location: /Users/leseb/Documents/AI/llama-stack/.venv/lib/python3.10/site-packages
Editable project location: /private/var/folders/mq/rnm5w_7s2d3fxmtkx02knvhm0000gn/T/tmp.ZBHU5Ezxg4/ollama/llama-stack-ollama-provider
Requires:
Required-by:
```
Closes: https://github.com/meta-llama/llama-stack/issues/658
Signed-off-by: Sébastien Han <seb@redhat.com>
Add the content to use AMD GPU as the vLLM server. Split the original
part to two sub chapters,
1. AMD vLLM server
2. NVIDIA vLLM server (orignal)
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
---------
Signed-off-by: Alex He <alehe@amd.com>
Move the test_context.py under the main tests directory, and fix the
code.
The problem was that the function captures the initial values of the
context variables and then restores those same initial values before
each iteration. This means that any modifications made to the context
variables during iteration are lost when the next iteration starts.
Error was:
```
====================================================== FAILURES =======================================================
______________________________________ test_preserve_contexts_across_event_loops ______________________________________
@pytest.mark.asyncio
async def test_preserve_contexts_across_event_loops():
"""
Test that context variables are preserved across event loop boundaries with nested generators.
This simulates the real-world scenario where:
1. A new event loop is created for each streaming request
2. The async generator runs inside that loop
3. There are multiple levels of nested generators
4. Context needs to be preserved across these boundaries
"""
# Create context variables
request_id = ContextVar("request_id", default=None)
user_id = ContextVar("user_id", default=None)
# Set initial values
# Results container to verify values across thread boundaries
results = []
# Inner-most generator (level 2)
async def inner_generator():
# Should have the context from the outer scope
yield (1, request_id.get(), user_id.get())
# Modify one context variable
user_id.set("user-modified")
# Should reflect the modification
yield (2, request_id.get(), user_id.get())
# Middle generator (level 1)
async def middle_generator():
inner_gen = inner_generator()
# Forward the first yield from inner
item = await inner_gen.__anext__()
yield item
# Forward the second yield from inner
item = await inner_gen.__anext__()
yield item
request_id.set("req-modified")
# Add our own yield with both modified variables
yield (3, request_id.get(), user_id.get())
# Function to run in a separate thread with a new event loop
def run_in_new_loop():
# Create a new event loop for this thread
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
# Outer generator (runs in the new loop)
async def outer_generator():
request_id.set("req-12345")
user_id.set("user-6789")
# Wrap the middle generator
wrapped_gen = preserve_contexts_async_generator(middle_generator(), [request_id, user_id])
# Process all items from the middle generator
async for item in wrapped_gen:
# Store results for verification
results.append(item)
# Run the outer generator in the new loop
loop.run_until_complete(outer_generator())
finally:
loop.close()
# Run the generator chain in a separate thread with a new event loop
with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(run_in_new_loop)
future.result() # Wait for completion
# Verify the results
assert len(results) == 3
# First yield should have original values
assert results[0] == (1, "req-12345", "user-6789")
# Second yield should have modified user_id
assert results[1] == (2, "req-12345", "user-modified")
# Third yield should have both modified values
> assert results[2] == (3, "req-modified", "user-modified")
E AssertionError: assert (3, 'req-modified', 'user-6789') == (3, 'req-modified', 'user-modified')
E
E At index 2 diff: 'user-6789' != 'user-modified'
E
E Full diff:
E (
E 3,
E 'req-modified',
E - 'user-modified',
E + 'user-6789',
E )
tests/unit/distribution/test_context.py:155: AssertionError
-------------------------------------------------- Captured log call --------------------------------------------------
ERROR asyncio:base_events.py:1758 Task was destroyed but it is pending!
task: <Task pending name='Task-7' coro=<<async_generator_athrow without __name__>()>>
================================================== warnings summary ===================================================
.venv/lib/python3.10/site-packages/pydantic/fields.py:1042
/Users/leseb/Documents/AI/llama-stack/.venv/lib/python3.10/site-packages/pydantic/fields.py:1042: PydanticDeprecatedSince20: Using extra keyword arguments on `Field` is deprecated and will be removed. Use `json_schema_extra` instead. (Extra keys: 'contentEncoding'). Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.10/migration/
warn(
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
=============================================== short test summary info ===============================================
FAILED tests/unit/distribution/test_context.py::test_preserve_contexts_across_event_loops - AssertionError: assert (3, 'req-modified', 'user-6789') == (3, 'req-modified', 'user-modified')
At index 2 diff: 'user-6789' != 'user-modified'
Full diff:
(
3,
'req-modified',
- 'user-modified',
+ 'user-6789',
)
```
[//]: # (## Documentation)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
This PR updates the [playground RAG
example](llama_stack/distribution/ui/page/playground/rag.py) so that the
agent is able to use its builtin conversation history. Here we are using
streamlit's `cache_resource` functionality to prevent the agent from
re-initializing after every interaction as well as storing its
session_id in the `session_state`. This allows the agent in the RAG
example to behave more closely to how it works using the python-client
directly.
[//]: # (If resolving an issue, uncomment and update the line below)
Closes#1869
## Test Plan
Without these changes, if you ask it "What is 2 + 2"? followed by the
question "What did I just ask?" It will provide an obviously incorrect
answer.
With these changes, you can ask the same series of questions and it will
provide the correct answer.
[//]: # (## Documentation)
Signed-off-by: Michael Clifford <mcliffor@redhat.com>
# What does this PR do?
## Test Plan
export MODEL=accounts/fireworks/models/llama4-scout-instruct-basic;
LLAMA_STACK_CONFIG=verification pytest -s -v tests/integration/inference
--vision-model $MODEL --text-model $MODEL
# What does this PR do?
Move around bits. This makes the copies from llama-models _much_ easier
to maintain and ensures we don't entangle meta-reference specific
tidbits into llama-models code even by accident.
Also, kills the meta-reference-quantized-gpu distro and rolls
quantization deps into meta-reference-gpu.
## Test Plan
```
LLAMA_MODELS_DEBUG=1 \
with-proxy llama stack run meta-reference-gpu \
--env INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct \
--env INFERENCE_CHECKPOINT_DIR=<DIR> \
--env MODEL_PARALLEL_SIZE=4 \
--env QUANTIZATION_TYPE=fp8_mixed
```
Start a server with and without quantization. Point integration tests to
it using:
```
pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config http://localhost:8321 --text-model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
Running full Tool Calling required some updates to work e2e.
- Remove `python_start` and `python_end` tags
- Tool Call messages and Tool Resposne messages should end with
`<|eom|>`
- System prompt needed updates
```
You are a helpful assisant who can can answer general questions or invoke tools when necessary.
In addition to tool calls, you should also augment your responses by using the tool outputs.
```
### Test Plan
- Start server with meta-reference
```
LLAMA_STACK_DISABLE_VERSION_CHECK=1 LLAMA_MODELS_DEBUG=1 INFERENCE_MODEL=meta-llama/$MODEL llama stack run meta-reference-gpu
```
- Added **NEW** tests with 5 test cases for multi-turn tool calls
```
pytest -s -v --stack-config http://localhost:8321 tests/integration/inference/test_text_inference.py --text-model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
- Also verified all vision and agent tests pass
# What does this PR do?
- **chore: mypy for strong_typing**
- **chore: mypy for remote::vllm**
- **chore: mypy for remote::ollama**
- **chore: mypy for providers.datatype**
---------
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Don't return list for runtime tools. Instead return Response object for
pagination and consistency with other APIs.
---------
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Move pagination logic from LocalFS and HuggingFace implementations into
a common helper function to ensure consistent pagination behavior across
providers. This reduces code duplication and centralizes pagination
logic in one place.
## Test Plan
Run this script:
```
from llama_stack_client import LlamaStackClient
# Initialize the client
client = LlamaStackClient(base_url="http://localhost:8321")
# Register a dataset
response = client.datasets.register(
purpose="eval/messages-answer", # or "eval/question-answer" or "post-training/messages"
source={"type": "uri", "uri": "huggingface://datasets/llamastack/simpleqa?split=train"},
dataset_id="my_dataset", # optional, will be auto-generated if not provided
metadata={"description": "My evaluation dataset"}, # optional
)
# Verify the dataset was registered by listing all datasets
datasets = client.datasets.list()
print(f"Registered datasets: {[d.identifier for d in datasets]}")
# You can then access the data using the datasetio API
# rows = client.datasets.iterrows(dataset_id="my_dataset", start_index=1, limit=2)
rows = client.datasets.iterrows(dataset_id="my_dataset")
print(f"Data: {rows.data}")
```
And play with `start_index` and `limit`.
[//]: # (## Documentation)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
https://github.com/meta-llama/llama-stack/pull/1828 removed
__root_span__ attribute which is still needed
## Test Plan
added telemetry integration test
LLAMA_STACK_CONFIG=http://localhost:5001 pytest -s -v
tests/integration/telemetry --safety-shield meta-llama/Llama-Guard-3-8B
--text-model accounts/fireworks/models/llama-v3p3-70b-instruct
# What does this PR do?
This PR converts blocking Milvus Client calls to non-blocking.
Another one for https://github.com/meta-llama/llama-stack/issues/1489
## Test Plan
I ran the integration tests from
https://github.com/meta-llama/llama-stack/pull/1467 with:
```python
pytest -s -v tests/integration/vector_io/test_vector_io.py \
--stack-config inference=sentence-transformers,vector_io=inline::milvus \
--embedding-model all-miniLM-L6-V2 --env MILVUS_DB_PATH=/tmp/moo.db
INFO 2025-03-28 21:35:22,726 tests.integration.conftest:41 tests: Setting DISABLE_CODE_SANDBOX=1 for macOS
/Users/farceo/dev/llama-stack/.venv/lib/python3.10/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"
warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
=============================================================================================================================================================================================================================================================== test session starts ===============================================================================================================================================================================================================================================================
platform darwin -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /Users/farceo/dev/llama-stack/.venv/bin/python3
cachedir: .pytest_cache
metadata: {'Python': '3.10.16', 'Platform': 'macOS-15.3.1-arm64-arm-64bit', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'cov': '6.0.0', 'html': '4.1.1', 'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0', 'nbval': '0.11.0'}}
rootdir: /Users/farceo/dev/llama-stack
configfile: pyproject.toml
plugins: cov-6.0.0, html-4.1.1, metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0, nbval-0.11.0
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 7 items
tests/integration/vector_io/test_vector_io.py::test_vector_db_retrieve[emb=all-miniLM-L6-V2] PASSED
tests/integration/vector_io/test_vector_io.py::test_vector_db_register[emb=all-miniLM-L6-V2] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=all-miniLM-L6-V2-test_case0] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=all-miniLM-L6-V2-test_case1] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=all-miniLM-L6-V2-test_case2] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=all-miniLM-L6-V2-test_case3] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=all-miniLM-L6-V2-test_case4] PASSED
========================================================================================================================================================================================================================================================= 7 passed, 2 warnings in 40.33s ==========================================================================================================================================================================================================================================================
```
[//]: # (## Documentation)
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
Adding chunk_size_in_tokens to playground rag_tool insert.
# Closes#1825
## Test Plan
Tested locally.
[//]: # (## Documentation)
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
This is the second attempt to switch to system packages by default. Now
with a hack to detect conda environment - in which case conda image-type
is used.
Note: Conda will only be used when --image-name is unset *and*
CONDA_DEFAULT_ENV is set. This means that users without conda will
correctly fall back to using system packages when no --image-* arguments
are passed at all.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
Uses virtualenv:
```
$ llama stack build --template ollama --image-type venv
$ llama stack run --image-type venv ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Using virtual environment: /home/ec2-user/src/llama-stack/schedule/.local
[...]
```
Uses system packages (virtualenv already initialized):
```
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
INFO 2025-03-27 20:46:22,882 llama_stack.cli.stack.run:142 server: No image type or image name provided. Assuming environment packages.
[...]
```
Attempt to run from environment packages without necessary packages
installed:
```
$ python -m venv barebones
$ . ./barebones/bin/activate
$ pip install -e . # to install llama command
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
ModuleNotFoundError: No module named 'fastapi'
```
^ failed as expected because the environment doesn't have necessary
packages installed.
Now install some packages in the new environment:
```
$ pip install fastapi opentelemetry-api opentelemetry-sdk opentelemetry-exporter-otlp aiosqlite ollama openai datasets faiss-cpu mcp autoevals
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
```
Now see if setting CONDA_DEFAULT_ENV will change what happens by
default:
```
$ export CONDA_DEFAULT_ENV=base
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Using conda environment: base
Conda environment base does not exist.
[...]
```
---------
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>