Commit graph

196 commits

Author SHA1 Message Date
Jash Gulabrai
30fc66923b
fix: Add llama-3.2-1b-instruct to NVIDIA fine-tuned model list (#1975)
# What does this PR do?
Adds `meta/llama-3.2-1b-instruct` to list of models that NeMo Customizer
can fine-tune. This is the model our example notebooks typically use for
fine-tuning.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
2025-04-16 15:02:08 -07:00
Daniel Alvarez Sanchez
b5a9ef4c6d
fix: Do not send an empty 'tools' list to remote vllm (#1957)
Fixes: #1955

Since 0.2.0, the vLLM gets an empty list (vs ``None``in 0.1.9 and
before) when there are no tools configured which causes the issue
described in #1955 p. This patch avoids sending the 'tools' param to the
vLLM altogether instead of an empty list.

It also adds a small unit test to avoid regressions.

The OpenAI
[specification](https://platform.openai.com/docs/api-reference/chat/create)
does not explicitly state that the list cannot be empty but I found this
out through experimentation and it might depend on the actual remote
vllm. In any case, as this parameter is Optional, is best to skip it
altogether if there's no tools configured.

Signed-off-by: Daniel Alvarez <dalvarez@redhat.com>
2025-04-15 20:31:12 -04:00
Nathan Weinberg
cf158f2cb9
feat: allow ollama to use 'latest' if available but not specified (#1903)
# What does this PR do?
ollama's CLI supports running models via commands such as 'ollama run
llama3.2' this syntax does not work with the INFERENCE_MODEL llamastack
var as currently specifying a tag such as 'latest' is required

this commit will check to see if the 'latest' model is available and use
that model if a user passes a model name without a tag but the 'latest'
is available in ollama

## Test Plan
Behavior pre-code change
```bash
$ INFERENCE_MODEL=llama3.2 llama stack build --template ollama --image-type venv --run
...
INFO     2025-04-08 13:42:42,842 llama_stack.providers.remote.inference.ollama.ollama:80 inference: checking            
         connectivity to Ollama at `http://beanlab1.bss.redhat.com:11434`...                                            
Traceback (most recent call last):
  File "<frozen runpy>", line 198, in _run_module_as_main
  File "<frozen runpy>", line 88, in _run_code
  File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/distribution/server/server.py", line 502, in <module>
    main()
  File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/distribution/server/server.py", line 401, in main
    impls = asyncio.run(construct_stack(config))
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/lib64/python3.12/asyncio/runners.py", line 195, in run
    return runner.run(main)
           ^^^^^^^^^^^^^^^^
  File "/usr/lib64/python3.12/asyncio/runners.py", line 118, in run
    return self._loop.run_until_complete(task)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/lib64/python3.12/asyncio/base_events.py", line 691, in run_until_complete
    return future.result()
           ^^^^^^^^^^^^^^^
  File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/distribution/stack.py", line 222, in construct_stack
    await register_resources(run_config, impls)
  File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/distribution/stack.py", line 99, in register_resources
    await method(**obj.model_dump())
  File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/providers/utils/telemetry/trace_protocol.py", line 102, in async_wrapper
    result = await method(self, *args, **kwargs)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/distribution/routers/routing_tables.py", line 294, in register_model
    registered_model = await self.register_object(model)
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/distribution/routers/routing_tables.py", line 228, in register_object
    registered_obj = await register_object_with_provider(obj, p)
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/distribution/routers/routing_tables.py", line 77, in register_object_with_provider
    return await p.register_model(obj)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/providers/utils/telemetry/trace_protocol.py", line 102, in async_wrapper
    result = await method(self, *args, **kwargs)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/providers/remote/inference/ollama/ollama.py", line 315, in register_model
    raise ValueError(
ValueError: Model 'llama3.2' is not available in Ollama. Available models: llama3.2:latest
++ error_handler 108
++ echo 'Error occurred in script at line: 108'
Error occurred in script at line: 108
++ exit 1
```

Behavior post-code change
```bash
$ INFERENCE_MODEL=llama3.2 llama stack build --template ollama --image-type venv --run
...
INFO     2025-04-08 13:58:17,365 llama_stack.providers.remote.inference.ollama.ollama:80 inference: checking            
         connectivity to Ollama at `http://beanlab1.bss.redhat.com:11434`...                                            
WARNING  2025-04-08 13:58:18,190 llama_stack.providers.remote.inference.ollama.ollama:317 inference: Imprecise provider 
         resource id was used but 'latest' is available in Ollama - using 'llama3.2:latest'                             
INFO     2025-04-08 13:58:18,191 llama_stack.providers.remote.inference.ollama.ollama:308 inference: Pulling embedding  
         model `all-minilm:latest` if necessary...                                                                      
INFO     2025-04-08 13:58:18,799 __main__:478 server: Listening on ['::', '0.0.0.0']:8321                               
INFO:     Started server process [28378]
INFO:     Waiting for application startup.
INFO     2025-04-08 13:58:18,803 __main__:148 server: Starting up                                                       
INFO:     Application startup complete.
INFO:     Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
...
```

## Documentation
Did not document this anywhere but happy to do so if there is an
appropriate place

Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
2025-04-14 09:03:54 -07:00
Ben Browning
7641a5cd0b
fix: 100% OpenAI API verification for together and fireworks (#1946)
# What does this PR do?

TLDR: Changes needed to get 100% passing tests for OpenAI API
verification tests when run against Llama Stack with the `together`,
`fireworks`, and `openai` providers. And `groq` is better than before,
at 88% passing.

This cleans up the OpenAI API support for image message types
(specifically `image_url` types) and handling of the `response_format`
chat completion parameter. Both of these required a few more Pydantic
model definitions in our Inference API, just to move from the
not-quite-right stubs I had in place to something fleshed out to match
the actual OpenAI API specs.

As part of testing this, I also found and fixed a bug in the litellm
implementation of openai_completion and openai_chat_completion, so the
providers based on those should actually be working now.

The method `prepare_openai_completion_params` in
`llama_stack/providers/utils/inference/openai_compat.py` was improved to
actually recursively clean up input parameters, including handling of
lists, dicts, and dumping of Pydantic models to dicts. These changes
were required to get to 100% passing tests on the OpenAI API
verification against the `openai` provider.

With the above, the together.ai provider was passing as well as it is
without Llama Stack. But, since we have Llama Stack in the middle, I
took the opportunity to clean up the together.ai provider so that it now
also passes the OpenAI API spec tests we have at 100%. That means
together.ai is now passing our verification test better when using an
OpenAI client talking to Llama Stack than it is when hitting together.ai
directly, without Llama Stack in the middle.

And, another round of work for Fireworks to improve translation of
incoming OpenAI chat completion requests to Llama Stack chat completion
requests gets the fireworks provider passing at 100%. The server-side
fireworks.ai tool calling support with OpenAI chat completions and Llama
4 models isn't great yet, but by pointing the OpenAI clients at Llama
Stack's API we can clean things up and get everything working as
expected for Llama 4 models.

## Test Plan

### OpenAI API Verification Tests

I ran the OpenAI API verification tests as below and 100% of the tests
passed.

First, start a Llama Stack server that runs the `openai` provider with
the `gpt-4o` and `gpt-4o-mini` models deployed. There's not a template
setup to do this out of the box, so I added a
`tests/verifications/openai-api-verification-run.yaml` to do this.

First, ensure you have the necessary API key environment variables set:

```
export TOGETHER_API_KEY="..."
export FIREWORKS_API_KEY="..."
export OPENAI_API_KEY="..."
```

Then, run a Llama Stack server that serves up all these providers:

```
llama stack run \
      --image-type venv \
      tests/verifications/openai-api-verification-run.yaml
```

Finally, generate a new verification report against all these providers,
both with and without the Llama Stack server in the middle.

```
python tests/verifications/generate_report.py \
      --run-tests \
      --provider \
        together \
        fireworks \
        groq \
        openai \
        together-llama-stack \
        fireworks-llama-stack \
        groq-llama-stack \
        openai-llama-stack
```

You'll see that most of the configurations with Llama Stack in the
middle now pass at 100%, even though some of them do not pass at 100%
when hitting the backend provider's API directly with an OpenAI client.

### OpenAI Completion Integration Tests with vLLM:

I also ran the smaller `test_openai_completion.py` test suite (that's
not yet merged with the verification tests) on multiple of the
providers, since I had to adjust the method signature of
openai_chat_completion a bit and thus had to touch lots of these
providers to match. Here's the tests I ran there, all passing:

```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run
```

in another terminal

```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```

### OpenAI Completion Integration Tests with ollama

```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run
```

in another terminal

```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```

### OpenAI Completion Integration Tests with together.ai

```
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" llama stack build --template together --image-type venv --run
```

in another terminal

```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct-Turbo"
```

### OpenAI Completion Integration Tests with fireworks.ai

```
INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" llama stack build --template fireworks --image-type venv --run
```

in another terminal

```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.1-8B-Instruct"

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-04-14 08:56:29 -07:00
Sébastien Han
69554158fa
feat: add health to all providers through providers endpoint (#1418)
The `/v1/providers` now reports the health status of each
provider when implemented.

```
curl -L http://127.0.0.1:8321/v1/providers|jq
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  4072  100  4072    0     0   246k      0 --:--:-- --:--:-- --:--:--  248k
{
  "data": [
    {
      "api": "inference",
      "provider_id": "ollama",
      "provider_type": "remote::ollama",
      "config": {
        "url": "http://localhost:11434"
      },
      "health": {
        "status": "OK"
      }
    },
    {
      "api": "vector_io",
      "provider_id": "faiss",
      "provider_type": "inline::faiss",
      "config": {
        "kvstore": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/faiss_store.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "safety",
      "provider_id": "llama-guard",
      "provider_type": "inline::llama-guard",
      "config": {
        "excluded_categories": []
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "agents",
      "provider_id": "meta-reference",
      "provider_type": "inline::meta-reference",
      "config": {
        "persistence_store": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/agents_store.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "telemetry",
      "provider_id": "meta-reference",
      "provider_type": "inline::meta-reference",
      "config": {
        "service_name": "llama-stack",
        "sinks": "console,sqlite",
        "sqlite_db_path": "/Users/leseb/.llama/distributions/ollama/trace_store.db"
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "eval",
      "provider_id": "meta-reference",
      "provider_type": "inline::meta-reference",
      "config": {
        "kvstore": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/meta_reference_eval.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "datasetio",
      "provider_id": "huggingface",
      "provider_type": "remote::huggingface",
      "config": {
        "kvstore": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/huggingface_datasetio.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "datasetio",
      "provider_id": "localfs",
      "provider_type": "inline::localfs",
      "config": {
        "kvstore": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/localfs_datasetio.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "scoring",
      "provider_id": "basic",
      "provider_type": "inline::basic",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "scoring",
      "provider_id": "llm-as-judge",
      "provider_type": "inline::llm-as-judge",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "scoring",
      "provider_id": "braintrust",
      "provider_type": "inline::braintrust",
      "config": {
        "openai_api_key": "********"
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "brave-search",
      "provider_type": "remote::brave-search",
      "config": {
        "api_key": "********",
        "max_results": 3
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "tavily-search",
      "provider_type": "remote::tavily-search",
      "config": {
        "api_key": "********",
        "max_results": 3
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "code-interpreter",
      "provider_type": "inline::code-interpreter",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "rag-runtime",
      "provider_type": "inline::rag-runtime",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "model-context-protocol",
      "provider_type": "remote::model-context-protocol",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "wolfram-alpha",
      "provider_type": "remote::wolfram-alpha",
      "config": {
        "api_key": "********"
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    }
  ]
}
```

Per providers too:

```
curl -L http://127.0.0.1:8321/v1/providers/ollama
{"api":"inference","provider_id":"ollama","provider_type":"remote::ollama","config":{"url":"http://localhost:11434"},"health":{"status":"OK"}}
```

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-04-14 11:59:36 +02:00
Ashwin Bharambe
f34f22f8c7
feat: add batch inference API to llama stack inference (#1945)
# What does this PR do?

This PR adds two methods to the Inference API:
- `batch_completion`
- `batch_chat_completion`

The motivation is for evaluations targeting a local inference engine
(like meta-reference or vllm) where batch APIs provide for a substantial
amount of acceleration.

Why did I not add this to `Api.batch_inference` though? That just
resulted in a _lot_ more book-keeping given the structure of Llama
Stack. Had I done that, I would have needed to create a notion of a
"batch model" resource, setup routing based on that, etc. This does not
sound ideal.

So what's the future of the batch inference API? I am not sure. Maybe we
can keep it for true _asynchronous_ execution. So you can submit
requests, and it can return a Job instance, etc.

## Test Plan

Run meta-reference-gpu using:
```bash
export INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct
export INFERENCE_CHECKPOINT_DIR=../checkpoints/Llama-4-Scout-17B-16E-Instruct-20250331210000
export MODEL_PARALLEL_SIZE=4
export MAX_BATCH_SIZE=32
export MAX_SEQ_LEN=6144

LLAMA_MODELS_DEBUG=1 llama stack run meta-reference-gpu
```

Then run the batch inference test case.
2025-04-12 11:41:12 -07:00
Ben Browning
2b2db5fbda
feat: OpenAI-Compatible models, completions, chat/completions (#1894)
# What does this PR do?

This stubs in some OpenAI server-side compatibility with three new
endpoints:

/v1/openai/v1/models
/v1/openai/v1/completions
/v1/openai/v1/chat/completions

This gives common inference apps using OpenAI clients the ability to
talk to Llama Stack using an endpoint like
http://localhost:8321/v1/openai/v1 .

The two "v1" instances in there isn't awesome, but the thinking is that
Llama Stack's API is v1 and then our OpenAI compatibility layer is
compatible with OpenAI V1. And, some OpenAI clients implicitly assume
the URL ends with "v1", so this gives maximum compatibility.

The openai models endpoint is implemented in the routing layer, and just
returns all the models Llama Stack knows about.

The following providers should be working with the new OpenAI
completions and chat/completions API:
* remote::anthropic (untested)
* remote::cerebras-openai-compat (untested)
* remote::fireworks (tested)
* remote::fireworks-openai-compat (untested)
* remote::gemini (untested)
* remote::groq-openai-compat (untested)
* remote::nvidia (tested)
* remote::ollama (tested)
* remote::openai (untested)
* remote::passthrough (untested)
* remote::sambanova-openai-compat (untested)
* remote::together (tested)
* remote::together-openai-compat (untested)
* remote::vllm (tested)

The goal to support this for every inference provider - proxying
directly to the provider's OpenAI endpoint for OpenAI-compatible
providers. For providers that don't have an OpenAI-compatible API, we'll
add a mixin to translate incoming OpenAI requests to Llama Stack
inference requests and translate the Llama Stack inference responses to
OpenAI responses.

This is related to #1817 but is a bit larger in scope than just chat
completions, as I have real use-cases that need the older completions
API as well.

## Test Plan

### vLLM

```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run

LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```

### ollama
```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run

LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```



## Documentation

Run a Llama Stack distribution that uses one of the providers mentioned
in the list above. Then, use your favorite OpenAI client to send
completion or chat completion requests with the base_url set to
http://localhost:8321/v1/openai/v1 . Replace "localhost:8321" with the
host and port of your Llama Stack server, if different.

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-04-11 13:14:17 -07:00
Jash Gulabrai
c1cb6aad11
feat: Add unit tests for NVIDIA safety (#1897)
# What does this PR do?
This PR adds unit tests for the NVIDIA Safety provider implementation.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
1. Ran `./scripts/unit-tests.sh
tests/unit/providers/nvidia/test_safety.py` from the root of the
project. Verified tests pass.
```
tests/unit/providers/nvidia/test_safety.py::TestNVIDIASafetyAdapter::test_init_nemo_guardrails Initializing NVIDIASafetyAdapter(http://nemo.test)...
PASSED
tests/unit/providers/nvidia/test_safety.py::TestNVIDIASafetyAdapter::test_init_nemo_guardrails_invalid_temperature Initializing NVIDIASafetyAdapter(http://nemo.test)...
PASSED
tests/unit/providers/nvidia/test_safety.py::TestNVIDIASafetyAdapter::test_register_shield_with_valid_id Initializing NVIDIASafetyAdapter(http://nemo.test)...
PASSED
tests/unit/providers/nvidia/test_safety.py::TestNVIDIASafetyAdapter::test_register_shield_without_id Initializing NVIDIASafetyAdapter(http://nemo.test)...
PASSED
tests/unit/providers/nvidia/test_safety.py::TestNVIDIASafetyAdapter::test_run_shield_allowed Initializing NVIDIASafetyAdapter(http://nemo.test)...
PASSED
tests/unit/providers/nvidia/test_safety.py::TestNVIDIASafetyAdapter::test_run_shield_blocked Initializing NVIDIASafetyAdapter(http://nemo.test)...
PASSED
tests/unit/providers/nvidia/test_safety.py::TestNVIDIASafetyAdapter::test_run_shield_http_error Initializing NVIDIASafetyAdapter(http://nemo.test)...
PASSED
tests/unit/providers/nvidia/test_safety.py::TestNVIDIASafetyAdapter::test_run_shield_not_found Initializing NVIDIASafetyAdapter(http://nemo.test)...
PASSED
```

[//]: # (## Documentation)

---------

Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
2025-04-11 11:49:55 -07:00
Ben Browning
2a74f0db39
fix: remove extra sft args in NvidiaPostTrainingAdapter (#1939)
# What does this PR do?

The supervised_fine_tune method in NvidiaPostTrainingAdapter had some
extra args that aren't part of the post_training protocol, and these
extra args were causing FastAPI to throw an error when attempting to
stand up an endpoint that used this provider.

(Closes #1938)

## Test Plan

Before this change, bringing up a stack with the `nvidia` template
failed. Afterwards, it passes. I'm testing this like:

```
INFERENCE_MODEL="meta/llama-3.1-8b-instruct" \
llama stack build --template nvidia --image-type venv --run
```

I also ensured the nvidia/test_supervised_fine_tuning.py tests still
pass via:

```
python -m pytest \
  tests/unit/providers/nvidia/test_supervised_fine_tuning.py
```

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-04-11 10:17:57 -07:00
Matthew Farrellee
3a9be58523
fix: use ollama list to find models (#1854)
# What does this PR do?

closes #1853 

## Test Plan
```
uv run llama stack build --image-type conda --image-name ollama --config llama_stack/templates/ollama/build.yaml

ollama pull llama3.2:3b

LLAMA_STACK_CONFIG=http://localhost:8321 uv run pytest tests/integration/inference/test_text_inference.py -v --text-model=llama3.2:3b
```
2025-04-09 10:34:26 +02:00
ehhuang
7b4eb0967e
test: verification on provider's OAI endpoints (#1893)
# What does this PR do?


## Test Plan
export MODEL=accounts/fireworks/models/llama4-scout-instruct-basic;
LLAMA_STACK_CONFIG=verification pytest -s -v tests/integration/inference
--vision-model $MODEL --text-model $MODEL
2025-04-07 23:06:28 -07:00
Ashwin Bharambe
530d4bdfe1
refactor: move all llama code to models/llama out of meta reference (#1887)
# What does this PR do?

Move around bits. This makes the copies from llama-models _much_ easier
to maintain and ensures we don't entangle meta-reference specific
tidbits into llama-models code even by accident.

Also, kills the meta-reference-quantized-gpu distro and rolls
quantization deps into meta-reference-gpu.

## Test Plan

```
LLAMA_MODELS_DEBUG=1 \
  with-proxy llama stack run meta-reference-gpu \
  --env INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct \
   --env INFERENCE_CHECKPOINT_DIR=<DIR> \
   --env MODEL_PARALLEL_SIZE=4 \
   --env QUANTIZATION_TYPE=fp8_mixed
```

Start a server with and without quantization. Point integration tests to
it using:

```
pytest -s -v  tests/integration/inference/test_text_inference.py \
   --stack-config http://localhost:8321 --text-model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
2025-04-07 15:03:58 -07:00
Ihar Hrachyshka
66d6c2580e
chore: more mypy checks (ollama, vllm, ...) (#1777)
# What does this PR do?

- **chore: mypy for strong_typing**
- **chore: mypy for remote::vllm**
- **chore: mypy for remote::ollama**
- **chore: mypy for providers.datatype**

---------

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-04-01 17:12:39 +02:00
Rashmi Pawar
c169c164b3
fix: NVIDIA embedding results in InternalServerError (#1851)
Closes #1819 

## Test Plan

```bash
pytest -v tests/integration/inference/test_embedding.py  --stack-config=http://localhost:5002 --embedding-model=nvidia/llama-3.2-nv-embedqa-1b-v2
=============================================================================== test session starts ================================================================================
platform linux -- Python 3.10.0, pytest-8.3.5, pluggy-1.5.0 -- /home/ubuntu/miniconda/envs/nvidia-1/bin/python
cachedir: .pytest_cache
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: anyio-4.9.0
collected 23 items                                                                                                                                                                 

tests/integration/inference/test_embedding.py::test_embedding_text[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-list[string]] PASSED                                                [  4%]
tests/integration/inference/test_embedding.py::test_embedding_text[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-list[text]] PASSED                                                  [  8%]
tests/integration/inference/test_embedding.py::test_embedding_image[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-list[url,base64]] XFAIL (nvidia/llama-3.2-nv-embedqa-1b-v2 doe...) [ 13%]
tests/integration/inference/test_embedding.py::test_embedding_image[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-list[url,string,base64,text]] XFAIL (nvidia/llama-3.2-nv-embed...) [ 17%]
tests/integration/inference/test_embedding.py::test_embedding_truncation[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-long-end] PASSED                                              [ 21%]
tests/integration/inference/test_embedding.py::test_embedding_truncation[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-long-start] PASSED                                            [ 26%]
tests/integration/inference/test_embedding.py::test_embedding_truncation[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-short-end] PASSED                                             [ 30%]
tests/integration/inference/test_embedding.py::test_embedding_truncation[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-short-start] PASSED                                           [ 34%]
tests/integration/inference/test_embedding.py::test_embedding_truncation_error[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-long-text-None] PASSED                                  [ 39%]
tests/integration/inference/test_embedding.py::test_embedding_truncation_error[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-long-text-none] PASSED                                  [ 43%]
tests/integration/inference/test_embedding.py::test_embedding_truncation_error[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-long-str-None] PASSED                                   [ 47%]
tests/integration/inference/test_embedding.py::test_embedding_truncation_error[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-long-str-none] PASSED                                   [ 52%]
tests/integration/inference/test_embedding.py::test_embedding_output_dimension[emb=nvidia/llama-3.2-nv-embedqa-1b-v2] PASSED                                                 [ 56%]
tests/integration/inference/test_embedding.py::test_embedding_task_type[emb=nvidia/llama-3.2-nv-embedqa-1b-v2] PASSED                                                        [ 60%]
tests/integration/inference/test_embedding.py::test_embedding_text_truncation[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-None] PASSED                                             [ 65%]
tests/integration/inference/test_embedding.py::test_embedding_text_truncation[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-none] PASSED                                             [ 69%]
tests/integration/inference/test_embedding.py::test_embedding_text_truncation[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-end] PASSED                                              [ 73%]
tests/integration/inference/test_embedding.py::test_embedding_text_truncation[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-start] PASSED                                            [ 78%]
tests/integration/inference/test_embedding.py::test_embedding_text_truncation_error[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-NONE] PASSED                                       [ 82%]
tests/integration/inference/test_embedding.py::test_embedding_text_truncation_error[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-END] PASSED                                        [ 86%]
tests/integration/inference/test_embedding.py::test_embedding_text_truncation_error[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-START] PASSED                                      [ 91%]
tests/integration/inference/test_embedding.py::test_embedding_text_truncation_error[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-left] PASSED                                       [ 95%]
tests/integration/inference/test_embedding.py::test_embedding_text_truncation_error[emb=nvidia/llama-3.2-nv-embedqa-1b-v2-right] PASSED                                      [100%]

===================================================================== 21 passed, 2 xfailed, 1 warning in 7.18s =====================================================================
```

[//]: # (## Documentation)

cc: @dglogo @mattf @sumitb
2025-04-01 13:31:29 +02:00
Ihar Hrachyshka
0a895c70d1
fix(api): don't return list for runtime tools (#1686)
# What does this PR do?

Don't return list for runtime tools. Instead return Response object for
pagination and consistency with other APIs.

---------

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-04-01 09:53:11 +02:00
Sébastien Han
2ffa2b77ed
refactor: extract pagination logic into shared helper function (#1770)
# What does this PR do?

Move pagination logic from LocalFS and HuggingFace implementations into
a common helper function to ensure consistent pagination behavior across
providers. This reduces code duplication and centralizes pagination
logic in one place.


## Test Plan

Run this script:

```
from llama_stack_client import LlamaStackClient

# Initialize the client
client = LlamaStackClient(base_url="http://localhost:8321")

# Register a dataset
response = client.datasets.register(
    purpose="eval/messages-answer",  # or "eval/question-answer" or "post-training/messages"
    source={"type": "uri", "uri": "huggingface://datasets/llamastack/simpleqa?split=train"},
    dataset_id="my_dataset",  # optional, will be auto-generated if not provided
    metadata={"description": "My evaluation dataset"},  # optional
)

# Verify the dataset was registered by listing all datasets
datasets = client.datasets.list()
print(f"Registered datasets: {[d.identifier for d in datasets]}")

# You can then access the data using the datasetio API
# rows = client.datasets.iterrows(dataset_id="my_dataset", start_index=1, limit=2)
rows = client.datasets.iterrows(dataset_id="my_dataset")
print(f"Data: {rows.data}")
```

And play with `start_index` and `limit`.

[//]: # (## Documentation)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-03-31 13:08:29 -07:00
Francisco Arceo
74a2584cdb
chore: Updating Milvus Client calls to be non-blocking (#1830)
# What does this PR do?
This PR converts blocking Milvus Client calls to non-blocking.

Another one for https://github.com/meta-llama/llama-stack/issues/1489

## Test Plan

I ran the integration tests from
https://github.com/meta-llama/llama-stack/pull/1467 with:
```python
pytest -s -v tests/integration/vector_io/test_vector_io.py \
  --stack-config inference=sentence-transformers,vector_io=inline::milvus \
  --embedding-model all-miniLM-L6-V2  --env MILVUS_DB_PATH=/tmp/moo.db

INFO     2025-03-28 21:35:22,726 tests.integration.conftest:41 tests: Setting DISABLE_CODE_SANDBOX=1 for macOS          
/Users/farceo/dev/llama-stack/.venv/lib/python3.10/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"

  warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
=============================================================================================================================================================================================================================================================== test session starts ===============================================================================================================================================================================================================================================================
platform darwin -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /Users/farceo/dev/llama-stack/.venv/bin/python3
cachedir: .pytest_cache
metadata: {'Python': '3.10.16', 'Platform': 'macOS-15.3.1-arm64-arm-64bit', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'cov': '6.0.0', 'html': '4.1.1', 'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0', 'nbval': '0.11.0'}}
rootdir: /Users/farceo/dev/llama-stack
configfile: pyproject.toml
plugins: cov-6.0.0, html-4.1.1, metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0, nbval-0.11.0
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 7 items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

tests/integration/vector_io/test_vector_io.py::test_vector_db_retrieve[emb=all-miniLM-L6-V2] PASSED
tests/integration/vector_io/test_vector_io.py::test_vector_db_register[emb=all-miniLM-L6-V2] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=all-miniLM-L6-V2-test_case0] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=all-miniLM-L6-V2-test_case1] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=all-miniLM-L6-V2-test_case2] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=all-miniLM-L6-V2-test_case3] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=all-miniLM-L6-V2-test_case4] PASSED

========================================================================================================================================================================================================================================================= 7 passed, 2 warnings in 40.33s ==========================================================================================================================================================================================================================================================
```

[//]: # (## Documentation)

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-03-28 22:14:07 -04:00
Rashmi Pawar
1a73f8305b
feat: Add nemo customizer (#1448)
# What does this PR do?

This PR adds support for NVIDIA's NeMo Customizer API to the Llama Stack
post-training module. The integration enables users to fine-tune models
using NVIDIA's cloud-based customization service through a consistent
Llama Stack interface.


[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
Yet to be done

Things pending under this PR:

- [x] Integration of fine-tuned model(new checkpoint) for inference with
nvidia llm distribution
- [x] distribution integration of API
- [x] Add test cases for customizer(In Progress)
- [x] Documentation

```

LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/post_training/test_supervised_fine_tuning.py 

============================================================================================================================================================================ test session starts =============================================================================================================================================================================
platform linux -- Python 3.10.0, pytest-8.3.4, pluggy-1.5.0 -- /home/ubuntu/llama-stack/.venv/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.0', 'Platform': 'Linux-6.8.0-1021-gcp-x86_64-with-glibc2.35', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'nbval': '0.11.0', 'metadata': '3.1.1', 'anyio': '4.8.0', 'html': '4.1.1', 'asyncio': '0.25.3'}}
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: nbval-0.11.0, metadata-3.1.1, anyio-4.8.0, html-4.1.1, asyncio-0.25.3
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 2 items                                                                                                                                                                                                                                                                                                                                                            

tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_post_training_provider_registration[txt=8B] PASSED                                                                                                                                                                                                                                                 [ 50%]
tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_list_training_jobs[txt=8B] PASSED                                                                                                                                                                                                                                                                  [100%]

======================================================================================================================================================================== 2 passed, 1 warning in 0.10s ========================================================================================================================================================================
```
cc: @mattf @dglogo @sumitb

---------

Co-authored-by: Ubuntu <ubuntu@llama-stack-customizer-dev-inst-2tx95fyisatvlic4we8hidx5tfj.us-central1-a.c.brevdevprod.internal>
2025-03-25 11:01:10 -07:00
Hardik Shah
65ca85ba6b
fix: Updating ToolCall.arguments to allow for json strings that can be decoded on client side (#1685)
### What does this PR do?

Currently, `ToolCall.arguments` is a `Dict[str, RecursiveType]`.
However, on the client SDK side -- the `RecursiveType` gets deserialized
into a number ( both int and float get collapsed ) and hence when params
are `int` they get converted to float which might break client side
tools that might be doing type checking.

Closes: https://github.com/meta-llama/llama-stack/issues/1683

### Test Plan
Stainless changes --
https://github.com/meta-llama/llama-stack-client-python/pull/204
```
pytest -s -v --stack-config=fireworks tests/integration/agents/test_agents.py  --text-model meta-llama/Llama-3.1-8B-Instruct
```
2025-03-19 10:36:19 -07:00
Daniele Martinoli
cca9bd6cc3
feat: Qdrant inline provider (#1273)
# What does this PR do?
Removed local execution option from the remote Qdrant provider and
introduced an explicit inline provider for the embedded execution.
Updated the ollama template to include this option: this part can be
reverted in case we don't want to have two default `vector_io`
providers.

(Closes #1082)

## Test Plan
Build and run an ollama distro:
```bash
llama stack build --template ollama --image-type conda
llama stack run --image-type conda ollama
```

Run one of the sample ingestionapplicatinos like
[rag_with_vector_db.py](https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/rag_with_vector_db.py),
but replace this line:
```py
    selected_vector_provider = vector_providers[0]
```
with the following, to use the `qdrant` provider:
```py
    selected_vector_provider = vector_providers[1]
```

After running the test code, verify the timestamp of the Qdrant store:
```bash
% ls -ltr ~/.llama/distributions/ollama/qdrant.db/collection/test_vector_db_*
total 784
-rw-r--r--@ 1 dmartino  staff  401408 Feb 26 10:07 storage.sqlite
```

[//]: # (## Documentation)

---------

Signed-off-by: Daniele Martinoli <dmartino@redhat.com>
Co-authored-by: Francisco Arceo <farceo@redhat.com>
2025-03-18 14:04:21 -07:00
Matthew Farrellee
706b4ca651
feat: support nvidia hosted vision models (llama 3.2 11b/90b) (#1278)
# What does this PR do?

support nvidia hosted 3.2 11b/90b vision models. they are not hosted on
the common https://integrate.api.nvidia.com/v1. they are hosted on their
own individual urls.

## Test Plan

`LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -s -v
tests/client-sdk/inference/test_vision_inference.py
--inference-model=meta/llama-3.2-11b-vision-instruct -k image`
2025-03-18 11:54:10 -07:00
Luis Tomas Bolivar
168cbcbb92
fix: Add the option to not verify SSL at remote-vllm provider (#1585)
# What does this PR do?
Add the option to not verify SSL certificates for the remote-vllm
provider. This allows llama stack server to talk to remote LLMs which
have self-signed certificates

Partially addresses  #1545
2025-03-18 09:33:35 -04:00
Xi Yan
5287b437ae
feat(api): (1/n) datasets api clean up (#1573)
## PR Stack
- https://github.com/meta-llama/llama-stack/pull/1573
- https://github.com/meta-llama/llama-stack/pull/1625
- https://github.com/meta-llama/llama-stack/pull/1656
- https://github.com/meta-llama/llama-stack/pull/1657
- https://github.com/meta-llama/llama-stack/pull/1658
- https://github.com/meta-llama/llama-stack/pull/1659
- https://github.com/meta-llama/llama-stack/pull/1660

**Client SDK**
- https://github.com/meta-llama/llama-stack-client-python/pull/203

**CI**
- 1391130488
<img width="1042" alt="image"
src="https://github.com/user-attachments/assets/69636067-376d-436b-9204-896e2dd490ca"
/>
-- the test_rag_agent_with_attachments is flaky and not related to this
PR

## Doc
<img width="789" alt="image"
src="https://github.com/user-attachments/assets/b88390f3-73d6-4483-b09a-a192064e32d9"
/>


## Client Usage
```python
client.datasets.register(
    source={
        "type": "uri",
        "uri": "lsfs://mydata.jsonl",
    },
    schema="jsonl_messages",
    # optional 
    dataset_id="my_first_train_data"
)

# quick prototype debugging
client.datasets.register(
    data_reference={
        "type": "rows",
        "rows": [
                "messages": [...],
        ],
    },
    schema="jsonl_messages",
)
```

## Test Plan
- CI:
1387805545

```
LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/datasets/test_datasets.py
```

```
LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/scoring/test_scoring.py
```

```
pytest -v -s --nbval-lax ./docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb
```
2025-03-17 16:55:45 -07:00
cdgamarose-nv
252a487085
feat: added nvidia as safety provider (#1248)
# What does this PR do?
Adds nvidia as a safety provider by interfacing with the nemo guardrails
microservice.
This enables checking user’s input or the LLM’s output against input and
output guardrails by using the `/v1/guardrails/checks` endpoint of the[
guardrails
API.](https://developer.nvidia.com/docs/nemo-microservices/guardrails/source/guides/checks-guide.html)

## Test Plan
Deploy nemo guardrails service following the documentation:
https://developer.nvidia.com/docs/nemo-microservices/guardrails/source/getting-started/deploy-docker.html

### Standalone:
```bash
(venv) local-cdgamarose@a1u1g-rome-0153:~/llama-stack$ pytest -v -s llama_stack/providers/tests/safety/test_safety.py --providers inference=nvidia,safety=nvidia --safety-shield meta/llama-3.1-8b-instruct

=================================================================================== test session starts ===================================================================================
platform linux -- Python 3.10.12, pytest-8.3.4, pluggy-1.5.0 -- /localhome/local-cdgamarose/llama-stack/venv/bin/python3
cachedir: .pytest_cache
metadata: {'Python': '3.10.12', 'Platform': 'Linux-5.15.0-122-generic-x86_64-with-glibc2.35', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0', 'html': '4.1.1'}}
rootdir: /localhome/local-cdgamarose/llama-stack
configfile: pyproject.toml
plugins: metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0, html-4.1.1
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 2 items

llama_stack/providers/tests/safety/test_safety.py::TestSafety::test_shield_list[--inference=nvidia:safety=nvidia] Initializing NVIDIASafetyAdapter(http://0.0.0.0:7331)...
PASSED
llama_stack/providers/tests/safety/test_safety.py::TestSafety::test_run_shield[--inference=nvidia:safety=nvidia] PASSED

============================================================================== 2 passed, 2 warnings in 4.78s ==============================================================================

```
### Distribution:
```
llama stack run llama_stack/templates/nvidia/run-with-safety.yaml
curl -v -X 'POST' "http://localhost:8321/v1/safety/run-shield" -H 'accept: application/json' -H 'Content-Type: application/json' -d '{"shield_id": "meta/llama-3.1-8b-instruct", "messages":[{"role": "user", "content": "you are stupid"}]}'
{"violation":{"violation_level":"error","user_message":"Sorry I cannot do this.","metadata":{"self check input":{"status":"blocked"}}}}
```

[//]: # (## Documentation)

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-03-17 14:39:23 -07:00
yyymeta
fb418813fc
fix: passthrough impl response.content.text (#1665)
# What does this PR do?
current passthrough impl returns chatcompletion_message.content as a
TextItem() , not a straight string. so it's not compatible with other
providers, and causes parsing error downstream.

change away from the generic pydantic conversion, and explicitly parse
out content.text

## Test Plan

setup llama server with passthrough

```
llama-stack-client eval run-benchmark "MMMU_Pro_standard"   --model-id    meta-llama/Llama-3-8B   --output-dir /tmp/   --num-examples 20
```
works without parsing error
2025-03-17 13:42:08 -07:00
Ashwin Bharambe
d072b5fa0c
test: add unit test to ensure all config types are instantiable (#1601) 2025-03-12 22:29:58 -07:00
Botao Chen
90ca4d94de
fix: fix passthrough inference provider to make it work for agent (#1577)
## What does this PR do?
We noticed that the passthrough inference provider doesn't work agent
due to the type mis-match between client and server. We manually cast
the llama stack client type to llama stack server type to fix the issue.

## test 
run `python -m examples.agents.hello localhost 8321` within
llama-stack-apps

<img width="1073" alt="Screenshot 2025-03-11 at 8 43 44 PM"
src="https://github.com/user-attachments/assets/bd1bdd31-606a-420c-a249-95f6184cc0b1"
/>

fix https://github.com/meta-llama/llama-stack/issues/1560
2025-03-12 11:16:17 -07:00
Botao Chen
0b0be70605
feat: Add open benchmark template codegen (#1579)
## What does this PR do?

As title, add codegen for open-benchmark template

## test 

checked the new generated run.yaml file and it's identical before and
after the change

Also add small improvement to together template so that missing
TOGETHER_API_KEY won't crash the server which is the consistent user
experience as other remote providers
2025-03-12 11:12:08 -07:00
Dinesh Yeduguru
85501ed875
fix: remove Llama-3.2-1B-Instruct for fireworks (#1558)
# What does this PR do?
remove Llama-3.2-1B-Instruct for fireworks as its no longer appears to
be hosted on website.


## Test Plan

python distro_codegen.py
2025-03-11 11:19:29 -07:00
Sarthak Deshpande
921f8b1125
chore: Together async client (#1510)
# What does this PR do?
Uses together async client instead of sync client

[//]: # (If resolving an issue, uncomment and update the line below)

## Test Plan
Command to run the test is in the image below(2 tests fail, and they
were failing for the old stable version as well with the same errors.)
<img width="1689" alt="image"
src="https://github.com/user-attachments/assets/503db720-5379-425d-9844-0225010e41a1"
/>


[//]: # (## Documentation)

---------

Co-authored-by: sarthakdeshpande <sarthak.deshpande@engati.com>
2025-03-10 15:25:01 -07:00
Sarthak Deshpande
a9c5d3cd3d
chore: made inbuilt tools blocking calls into async non blocking calls (#1509)
# What does this PR do?
This PR converts blocking calls for in built tools like wolfram, brave,
tavily and bing into non blocking async calls
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
pytest -s -v tool_runtime/test_builtin_tools.py --stack-config=together
--text-model=meta-llama/Llama-3.1-8B-Instruct
Used the command above to get the below results
<img width="1710" alt="image"
src="https://github.com/user-attachments/assets/76b0ca06-f6e4-45fa-a114-0449bef2325b"
/>


<img width="1389" alt="image"
src="https://github.com/user-attachments/assets/5220ccbb-7882-4240-b17e-f362ad46d25b"
/>

<img width="1432" alt="image"
src="https://github.com/user-attachments/assets/bb93a41e-e82a-4c98-a22d-6b0e320aa974"
/>

[//]: # (## Documentation)

---------

Co-authored-by: sarthakdeshpande <sarthak.deshpande@engati.com>
2025-03-09 16:59:24 -07:00
Ashwin Bharambe
205661bc78
fix: Use re-entrancy and concurrency safe context managers for provider data (#1498)
Concurrent requests should not trample (or reuse) each others' provider
data. Provider data should be scoped to each request.

## Test Plan

Set the uvicorn server to have a single worker process + thread by
updating the config:
```python
    uvicorn_config = {
        ...
        "workers": 1,
        "loop": "asyncio",
    }
```

Then perform the following steps on `origin/main` (without this change).

(1) Run the server using `llama stack run dev` without having
`FIREWORKS_API_KEY` in the environment.

(2) Run a test by specifying the FIREWORKS_API_KEY env var so it gets
stored in the thread local
```
pytest -s -v tests/integration/inference/test_text_inference.py \
    --stack-config http://localhost:8321 \
    --text-model accounts/fireworks/models/llama-v3p1-8b-instruct \
    -k test_text_chat_completion_with_tool_calling_and_streaming \
     --env FIREWORKS_API_KEY=<...>
``` 
Ensure you don't have any other API keys in the environment (otherwise
the bug will not reproduce due to other specifics in our testing code.)
Verify this works.

(3) Run the same command again without specifying FIREWORKS_API_KEY. See
that the request actually succeeds when it *should have failed*.


----
Now do the same tests on this branch, verify step (3) results in
failure.

Finally, run the full `test_text_inference.py` test suite with this
change, verify it succeeds.
2025-03-08 22:56:30 -08:00
Xi Yan
5a2b9e121c
fix: return result for together's get_params (#1484)
# What does this PR do?

- return results for together's get_params
- fix issue
<img width="1538" alt="image"
src="https://github.com/user-attachments/assets/c4cd3802-85ef-4ff3-b2fd-76737be2e4ff"
/>

- the `return params` was accidentally deleted in
https://github.com/meta-llama/llama-stack/pull/1362/files#diff-d9345410ea64589cee96487b22eab0d45f7497a80c25dca295cecd254decb204

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
```
npm test examples
```


[//]: # (## Documentation)
2025-03-07 12:52:26 -08:00
Ben Browning
d86a893ead
fix: Swap to AsyncOpenAI client in remote vllm provider (#1459)
# What does this PR do?

This switches from an OpenAI client to the AsyncOpenAI client in the
remote vllm provider. The main benefit of this is that instead of each
client call being a blocking operation that was blocking our server
event loop, the client calls are now async operations that do not block
the event loop.

The actual fix is quite simple and straightforward. Creating a reliable
reproducer of this with a unit test that verifies we were blocking the
event loop before and are not blocking it any longer was a bit harder.
Some other inference providers have this same issue, so we may want to
make that simple delayed http server a bit more generic and pull it into
a common place as other inference providers get fixed.

(Closes #1457)

## Test Plan

I verified the unit tests and test_text_inference tests pass with this
change like below:

```
python -m pytest -v tests/unit
```

```
VLLM_URL="http://localhost:8000/v1" \
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
LLAMA_STACK_CONFIG=remote-vllm \
python -m pytest -v -s \
tests/integration/inference/test_text_inference.py \
--text-model "meta-llama/Llama-3.2-3B-Instruct"
```

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-03-07 14:48:00 -05:00
Sébastien Han
7cf1e24c4e
feat(logging): implement category-based logging (#1362)
# What does this PR do?

This commit introduces a new logging system that allows loggers to be
assigned
a category while retaining the logger name based on the file name. The
log
format includes both the logger name and the category, producing output
like:

```
INFO     2025-03-03 21:44:11,323 llama_stack.distribution.stack:103 [core]: Tool_groups: builtin::websearch served by
         tavily-search
```

Key features include:

- Category-based logging: Loggers can be assigned a category (e.g.,
  "core", "server") when programming. The logger can be loaded like
  this: `logger = get_logger(name=__name__, category="server")`
- Environment variable control: Log levels can be configured
per-category using the
  `LLAMA_STACK_LOGGING` environment variable. For example:
`LLAMA_STACK_LOGGING="server=DEBUG;core=debug"` enables DEBUG level for
the "server"
    and "core" categories.
- `LLAMA_STACK_LOGGING="all=debug"` sets DEBUG level globally for all
categories and
    third-party libraries.

This provides fine-grained control over logging levels while maintaining
a clean and
informative log format.

The formatter uses the rich library which provides nice colors better
stack traces like so:

```
ERROR    2025-03-03 21:49:37,124 asyncio:1758 [uncategorized]: unhandled exception during asyncio.run() shutdown
         task: <Task finished name='Task-16' coro=<handle_signal.<locals>.shutdown() done, defined at
         /Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py:146>
         exception=UnboundLocalError("local variable 'loop' referenced before assignment")>
         ╭────────────────────────────────────── Traceback (most recent call last) ───────────────────────────────────────╮
         │ /Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py:178 in shutdown                │
         │                                                                                                                │
         │   175 │   │   except asyncio.CancelledError:                                                                   │
         │   176 │   │   │   pass                                                                                         │
         │   177 │   │   finally:                                                                                         │
         │ ❱ 178 │   │   │   loop.stop()                                                                                  │
         │   179 │                                                                                                        │
         │   180 │   loop = asyncio.get_running_loop()                                                                    │
         │   181 │   loop.create_task(shutdown())                                                                         │
         ╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
         UnboundLocalError: local variable 'loop' referenced before assignment
```

Co-authored-by: Ashwin Bharambe <@ashwinb>
Signed-off-by: Sébastien Han <seb@redhat.com>

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

```
python -m llama_stack.distribution.server.server --yaml-config ./llama_stack/templates/ollama/run.yaml
INFO     2025-03-03 21:55:35,918 __main__:365 [server]: Using config file: llama_stack/templates/ollama/run.yaml           
INFO     2025-03-03 21:55:35,925 __main__:378 [server]: Run configuration:                                                 
INFO     2025-03-03 21:55:35,928 __main__:380 [server]: apis:                                                              
         - agents                                                     
``` 
[//]: # (## Documentation)

---------

Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-03-07 11:34:30 -08:00
Ashwin Bharambe
330cc9d09d
feat: add Milvus vectorDB (#1467)
# What does this PR do?
See https://github.com/meta-llama/llama-stack/pull/1171 which is the
original PR. Author: @zc277584121

feat: add [Milvus](https://milvus.io/) vectorDB

note: I use the MilvusClient to implement it instead of
AsyncMilvusClient, because when I tested AsyncMilvusClient, it would
raise issues about evenloop, which I think AsyncMilvusClient SDK is not
robust enough to be compatible with llama_stack framework.

## Test Plan
have passed the unit test and ene2end test
Here is my end2end test logs, including the client code, client log,
server logs from inline and remote settings

[test_end2end_logs.zip](https://github.com/user-attachments/files/18964391/test_end2end_logs.zip)

---------

Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Cheney Zhang <chen.zhang@zilliz.com>
2025-03-06 20:59:31 -08:00
Sébastien Han
803bf0e029
fix: solve ruff B008 warnings (#1444)
# What does this PR do?

The commit addresses the Ruff warning B008 by refactoring the code to
avoid calling SamplingParams() directly in function argument defaults.
Instead, it either uses Field(default_factory=SamplingParams) for
Pydantic models or sets the default to None and instantiates
SamplingParams inside the function body when the argument is None.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-03-06 16:48:35 -08:00
Ben Browning
9c4074ed49
fix: Gracefully handle no choices in remote vLLM response (#1424)
# What does this PR do?

This gracefully handles the case where the vLLM server responded to a
completion request with no choices, which can happen in certain vLLM
error situations. Previously, we'd error out with a stack trace about a
list index out of range. Now, we just log a warning to the user and move
past any chunks with an empty choices list.

A specific example of the type of stack trace this fixes:

```
  File "/app/llama-stack-source/llama_stack/providers/remote/inference/vllm/vllm.py", line 170, in _process_vllm_chat_completion_stream_response
    choice = chunk.choices[0]
             ~~~~~~~~~~~~~^^^
IndexError: list index out of range
```

Now, instead of erroring out with that stack trace, we log a warning
that vLLM failed to generate any completions and alert the user to check
the vLLM server logs for details.

This is related to #1277 and addresses the stack trace shown in that
issue, although does not in and of itself change the functional behavior
of vLLM tool calling.

## Test Plan

As part of this fix, I added new unit tests to trigger this same error
and verify it no longer happens. That is
`test_process_vllm_chat_completion_stream_response_no_choices` in the
new `tests/unit/providers/inference/test_remote_vllm.py`. I also added a
couple of more tests to trigger and verify the last couple of remote
vllm provider bug fixes - specifically a test for #1236 (builtin tool
calling) and #1325 (vLLM <= v0.6.3).

This required fixing the signature of
`_process_vllm_chat_completion_stream_response` to accept the actual
type of chunks it was getting passed - specifically changing from our
openai_compat `OpenAICompatCompletionResponse` to
`openai.types.chat.chat_completion_chunk.ChatCompletionChunk`. It was
not actually getting passed `OpenAICompatCompletionResponse` objects
before, and was using attributes that didn't exist on those objects. So,
the signature now matches the type of object it's actually passed.

Run these new unit tests like this:

```
pytest tests/unit/providers/inference/test_remote_vllm.py
```

Additionally, I ensured the existing `test_text_inference.py` tests
passed via:

```
VLLM_URL="http://localhost:8000/v1" \
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
LLAMA_STACK_CONFIG=remote-vllm \
python -m pytest -v tests/integration/inference/test_text_inference.py \
--inference-model "meta-llama/Llama-3.2-3B-Instruct" \
--vision-inference-model ""
```

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-03-05 15:07:54 -05:00
Alexey Rybak
d57cffb495
fix(pgvector): replace hyphens with underscores in table names (#1385)
# What does this PR do?
Fix SQL syntax errors caused by hyphens in Vector DB IDs by sanitizing
table

# (Closes #1332 )

## Test Plan
Test confirms table names with hyphens are properly converted to
underscores
2025-03-04 07:06:35 -08:00
Ashwin Bharambe
754feba61f
feat: add a configurable category-based logger (#1352)
A self-respecting server needs good observability which starts with
configurable logging. Llama Stack had little until now. This PR adds a
`logcat` facility towards that. Callsites look like:

```python
logcat.debug("inference", f"params to ollama: {params}")
```

- the first parameter is a category. there is a static list of
categories in `llama_stack/logcat.py`
- each category can be associated with a log-level which can be
configured via the `LLAMA_STACK_LOGGING` env var.
- a value `LLAMA_STACK_LOGGING=inference=debug;server=info"` does the
obvious thing. there is a special key called `all` which is an alias for
all categories

## Test Plan

Ran with `LLAMA_STACK_LOGGING="all=debug" llama stack run fireworks` and
saw the following:


![image](https://github.com/user-attachments/assets/d24b95ab-3941-426c-9ea0-a4c62542e6f0)

Hit it with a client-sdk test case and saw this:


![image](https://github.com/user-attachments/assets/3fee8c6c-986e-4125-a09c-f5dc019682e2)
2025-03-02 18:51:14 -08:00
Ashwin Bharambe
46b0a404e8
chore: remove straggler references to llama-models (#1345)
Straggler references cleanup
2025-03-01 14:26:03 -08:00
Ashwin Bharambe
8bbd52bb9f
chore: remove dependency on llama_models completely (#1344) 2025-03-01 12:48:08 -08:00
Ashwin Bharambe
6609d4ada4
feat: allow conditionally enabling providers in run.yaml (#1321)
# What does this PR do?

We want to bundle a bunch of (typically remote) providers in a distro
template and be able to configure them "on the fly" via environment
variables. So far, we have been able to do this with simple env var
replacements. However, sometimes you want to only conditionally enable
providers (because the relevant remote services may not be alive, or
relevant.) This was not possible until now.

To aid this, we add a simple (bash-like) env var replacement
enhancement: `${env.FOO+bar}` evaluates to `bar` if the variable is SET
and evaluates to empty string if it is not. On top of that, we update
our main resolver to ignore any provider whose ID is null.

This allows using the distro like this:

```bash
llama stack run dev --env CHROMADB_URL=http://localhost:6001 --env ENABLE_CHROMADB=1
```

when only Chroma is UP. This disables the other `pgvector` provider in
the run configuration.


## Test Plan

Hard code `chromadb` as the vector io provider inside
`test_vector_io.py` and run:

```bash
LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -s -v tests/client-sdk/vector_io/ --embedding-model all-MiniLM-L6-v2
```
2025-03-01 11:19:14 -08:00
Yuan Tang
18ab1985da
fix: Make remote::vllm compatible with vLLM <= v0.6.3 (#1325)
# What does this PR do?

This is to be consistent with OpenAI API and support vLLM <= v0.6.3

References:
*
https://platform.openai.com/docs/api-reference/chat/create#chat-create-tool_choice
* https://github.com/vllm-project/vllm/pull/10000

This fixes the error when running older versions of vLLM:

```
00:50:19.834 [START] /v1/inference/chat-completion
INFO 2025-02-28 00:50:20,203 httpx:1025: HTTP Request: POST https://api-xeai-granite-3-1-8b-instruct.apps.int.stc.ai.preprod.us-east-1.aws.paas.redhat.com/v1/chat/completions "HTTP/1.1 400 Bad Request"
Traceback (most recent call last):
  File "/usr/local/lib/python3.10/site-packages/llama_stack/distribution/server/server.py", line 235, in endpoint
    return await maybe_await(value)
  File "/usr/local/lib/python3.10/site-packages/llama_stack/distribution/server/server.py", line 201, in maybe_await
    return await value
  File "/usr/local/lib/python3.10/site-packages/llama_stack/providers/utils/telemetry/trace_protocol.py", line 89, in async_wrapper
    result = await method(self, *args, **kwargs)
  File "/usr/local/lib/python3.10/site-packages/llama_stack/distribution/routers/routers.py", line 193, in chat_completion
    return await provider.chat_completion(**params)
  File "/usr/local/lib/python3.10/site-packages/llama_stack/providers/utils/telemetry/trace_protocol.py", line 89, in async_wrapper
    result = await method(self, *args, **kwargs)
  File "/usr/local/lib/python3.10/site-packages/llama_stack/providers/remote/inference/vllm/vllm.py", line 286, in chat_completion
    return await self._nonstream_chat_completion(request, self.client)
  File "/usr/local/lib/python3.10/site-packages/llama_stack/providers/remote/inference/vllm/vllm.py", line 292, in _nonstream_chat_completion
    r = client.chat.completions.create(**params)
  File "/usr/local/lib/python3.10/site-packages/openai/_utils/_utils.py", line 279, in wrapper
    return func(*args, **kwargs)
  File "/usr/local/lib/python3.10/site-packages/openai/resources/chat/completions/completions.py", line 879, in create
    return self._post(
  File "/usr/local/lib/python3.10/site-packages/openai/_base_client.py", line 1290, in post
    return cast(ResponseT, self.request(cast_to, opts, stream=stream, stream_cls=stream_cls))
  File "/usr/local/lib/python3.10/site-packages/openai/_base_client.py", line 967, in request
    return self._request(
  File "/usr/local/lib/python3.10/site-packages/openai/_base_client.py", line 1071, in _request
    raise self._make_status_error_from_response(err.response) from None
openai.BadRequestError: Error code: 400 - {'object': 'error', 'message': "[{'type': 'value_error', 'loc': ('body',), 'msg': 'Value error, When using `tool_choice`, `tools` must be set.', 'input': {'messages': [{'role': 'user', 'content': [{'type': 'text', 'text': 'What model are you?'}]}], 'model': 'granite-3-1-8b-instruct', 'max_tokens': 4096, 'stream': False, 'temperature': 0.0, 'tools': None, 'tool_choice': 'auto'}, 'ctx': {'error': ValueError('When using `tool_choice`, `tools` must be set.')}}]", 'type': 'BadRequestError', 'param': None, 'code': 400}
INFO:     2600:1700:9d20:ac0::49:59736 - "POST /v1/inference/chat-completion HTTP/1.1" 500 Internal Server Error
00:50:20.266 [END] /v1/inference/chat-completion [StatusCode.OK] (431.99ms)
```

## Test Plan

All existing tests pass.

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-28 12:48:49 -05:00
Sébastien Han
6fa257b475
chore(lint): update Ruff ignores for project conventions and maintainability (#1184)
- Added new ignores from flake8-bugbear (`B007`, `B008`)
- Ignored `C901` (high function complexity) for now, pending review
- Maintained PyTorch conventions (`N812`, `N817`)
- Allowed `E731` (lambda assignments) for flexibility
- Consolidated existing ignores (`E402`, `E501`, `F405`, `C408`, `N812`)
- Documented rationale for each ignored rule

This keeps our linting aligned with project needs while tracking
potential fixes.

Signed-off-by: Sébastien Han <seb@redhat.com>

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-02-28 09:36:49 -08:00
Matthew Farrellee
e28cedd833
feat: add nvidia embedding implementation for new signature, task_type, output_dimention, text_truncation (#1213)
# What does this PR do?

updates nvidia inference provider's embedding implementation to use new
signature

add support for task_type, output_dimensions, text_truncation parameters

## Test Plan

`LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v
tests/client-sdk/inference/test_embedding.py --embedding-model
baai/bge-m3`
2025-02-27 16:58:11 -08:00
Ashwin Bharambe
04de2f84e9
fix: register provider model name and HF alias in run.yaml (#1304)
Each model known to the system has two identifiers: 

- the `provider_resource_id` (what the provider calls it) -- e.g.,
`accounts/fireworks/models/llama-v3p1-8b-instruct`
- the `identifier` (`model_id`) under which it is registered and gets
routed to the appropriate provider.

We have so far used the HuggingFace repo alias as the standardized
identifier you can use to refer to the model. So in the above example,
we'd use `meta-llama/Llama-3.1-8B-Instruct` as the name under which it
gets registered. This makes it convenient for users to refer to these
models across providers.

However, we forgot to register the _actual_ provider model ID also. You
should be able to route via `provider_resource_id` also, of course.

This change fixes this (somewhat grave) omission.

*Note*: this change is additive -- more aliases work now compared to
before.

## Test Plan

Run the following for distro=(ollama fireworks together)
```
LLAMA_STACK_CONFIG=$distro \
   pytest -s -v tests/client-sdk/inference/test_text_inference.py \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct --vision-inference-model=""
```
2025-02-27 16:39:23 -08:00
Ashwin Bharambe
928a39d17b
feat(providers): Groq now uses LiteLLM openai-compat (#1303)
Groq has never supported raw completions anyhow. So this makes it easier
to switch it to LiteLLM. All our test suite passes.

I also updated all the openai-compat providers so they work with api
keys passed from headers. `provider_data`

## Test Plan

```bash
LLAMA_STACK_CONFIG=groq \
   pytest -s -v tests/client-sdk/inference/test_text_inference.py \
   --inference-model=groq/llama-3.3-70b-versatile --vision-inference-model=""
```

Also tested (openai, anthropic, gemini) providers. No regressions.
2025-02-27 13:16:50 -08:00
Matthew Farrellee
99b6925ad8
feat: add nemo retriever text embedding models to nvidia inference provider (#1218)
# What does this PR do?

add the NeMo Retriever Embedding models from
https://docs.nvidia.com/nim/nemo-retriever/text-embedding/latest/support-matrix.html
2025-02-26 21:18:34 -08:00
Ben Browning
c64f0d5888
fix: Get builtin tool calling working in remote-vllm (#1236)
# What does this PR do?

This PR makes a couple of changes required to get the test
`tests/client-sdk/agents/test_agents.py::test_builtin_tool_web_search`
passing on the remote-vllm provider.

First, we adjust agent_instance to also pass in the description and
parameters of builtin tools. We need these parameters so we can pass the
tool's expected parameters into vLLM. The meta-reference implementations
may not have needed these for builtin tools, as they are able to take
advantage of the Llama-model specific support for certain builtin tools.
However, with vLLM, our server-side chat templates for tool calling
treat all tools the same and don't separate out Llama builtin vs custom
tools. So, we need to pass the full set of parameter definitions and
list of required parameters for builtin tools as well.

Next, we adjust the vllm streaming chat completion code to fix up some
edge cases where it was returning an extra ChatCompletionResponseEvent
with an empty ToolCall with empty string call_id, tool_name, and
arguments properties. This is a bug discovered after the above fix,
where after a successful tool invocation we were sending extra chunks
back to the client with these empty ToolCalls.

## Test Plan

With these changes, the following test that previously failed now
passes:

```
VLLM_URL="http://localhost:8000/v1" \
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
LLAMA_STACK_CONFIG=remote-vllm \
python -m pytest -v \
tests/client-sdk/agents/test_agents.py::test_builtin_tool_web_search \
--inference-model "meta-llama/Llama-3.2-3B-Instruct"
```

Additionally, I ran the remote-vllm client-sdk and provider inference
tests as below to ensure they all still passed with this change:

```
VLLM_URL="http://localhost:8000/v1" \
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
LLAMA_STACK_CONFIG=remote-vllm \
python -m pytest -v \
tests/client-sdk/inference/test_text_inference.py \
--inference-model "meta-llama/Llama-3.2-3B-Instruct"
```

```
VLLM_URL="http://localhost:8000/v1" \
python -m pytest -s -v \
llama_stack/providers/tests/inference/test_text_inference.py \
--providers "inference=vllm_remote"
```


[//]: # (## Documentation)

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-02-26 15:25:47 -05:00