forked from phoenix-oss/llama-stack-mirror
Compare commits
85 commits
kvant
...
eval_api_f
Author | SHA1 | Date | |
---|---|---|---|
|
7854885e5a | ||
|
cbb53af701 | ||
|
bc0cd07008 | ||
|
7f12ea290f | ||
|
97e7717c9b | ||
|
81bc051411 | ||
|
5038f0e376 | ||
|
c2eb47d7e6 | ||
|
2723b05164 | ||
|
64388de068 | ||
|
3f8c7a584a | ||
|
45f6d5cd08 | ||
|
a54d757ade | ||
|
c1d18283d2 | ||
|
0048274ec0 | ||
|
42447729e4 | ||
|
a92756a4b7 | ||
|
08c0c5505e | ||
|
bf135f38b1 | ||
|
205a50f10b | ||
|
24d48b3692 | ||
|
913e6eb50f | ||
|
820b9a00c7 | ||
|
85cad639ca | ||
|
d994499f09 | ||
|
f107e3229b | ||
|
5e817cd56a | ||
|
398319fe7a | ||
|
238cdc4e69 | ||
|
b98497ee56 | ||
|
e860c536da | ||
|
a69759613a | ||
|
a8b0467ec3 | ||
|
5c0888c29a | ||
|
46f2ba5910 | ||
|
ade3391170 | ||
|
452b2b1284 | ||
|
66cd83fb58 | ||
|
62abe2899a | ||
|
cb492eba37 | ||
|
1860751655 | ||
|
c80d1f906b | ||
|
035b2dcb60 | ||
|
d34b70e3ab | ||
|
d9264a0925 | ||
|
63f1525165 | ||
|
5cf7779b8f | ||
|
a6fa3aa5a2 | ||
|
f2d93324e9 | ||
|
28b8c1c815 | ||
|
6f5df08ebf | ||
|
a568bf3f9d | ||
|
2c9d624910 | ||
|
72ccdc19a8 | ||
|
5cb0ad7d7f | ||
|
39f4dfbf50 | ||
|
c7d741d89e | ||
|
cba4842a87 | ||
|
0e2a13da9c | ||
|
7606e49dbc | ||
|
a6095820af | ||
|
89885fd2fa | ||
|
78ec3d98f6 | ||
|
8b80a77fae | ||
|
8a6fa41a93 | ||
|
0df33049e3 | ||
|
b4d118fc5c | ||
|
772339bebf | ||
|
4f6f0f6a91 | ||
|
4cc1958af9 | ||
|
09039eca57 | ||
|
790b2d5cc0 | ||
|
a3173e8284 | ||
|
18de4cd08a | ||
|
8942071b3b | ||
|
f840018088 | ||
|
31e3409909 | ||
|
1d80ec7f81 | ||
|
0abedd070c | ||
|
817331e76e | ||
|
0e47c65051 | ||
|
02aa9a1e85 | ||
|
0e8a53ab69 | ||
|
8592c2b48a | ||
|
bc551e6459 |
166 changed files with 2513 additions and 11289 deletions
|
@ -1,23 +1,19 @@
|
|||
{
|
||||
"bedrock": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"boto3",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
|
@ -25,7 +21,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -33,27 +28,22 @@
|
|||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"cerebras": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"cerebras_cloud_sdk",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
|
@ -61,7 +51,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -69,29 +58,24 @@
|
|||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"ci-tests": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"fireworks-ai",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
|
@ -99,7 +83,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -108,7 +91,6 @@
|
|||
"sqlite-vec",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
|
@ -116,22 +98,18 @@
|
|||
"dell": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
|
@ -139,7 +117,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -147,30 +124,25 @@
|
|||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"dev": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"fireworks-ai",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"litellm",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
|
@ -178,7 +150,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -187,30 +158,25 @@
|
|||
"sqlite-vec",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"fireworks": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"fireworks-ai",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
|
@ -218,7 +184,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -226,28 +191,23 @@
|
|||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"groq": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"litellm",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
|
@ -255,7 +215,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -263,29 +222,24 @@
|
|||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"hf-endpoint": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
|
@ -293,7 +247,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -301,29 +254,24 @@
|
|||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"hf-serverless": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
|
@ -331,7 +279,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -339,7 +286,6 @@
|
|||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
|
@ -347,24 +293,20 @@
|
|||
"meta-reference-gpu": [
|
||||
"accelerate",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fairscale",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"lm-format-enforcer",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
|
@ -372,7 +314,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -383,32 +324,27 @@
|
|||
"torchvision",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"zmq"
|
||||
],
|
||||
"meta-reference-quantized-gpu": [
|
||||
"accelerate",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fairscale",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fbgemm-gpu",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"lm-format-enforcer",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
|
@ -416,7 +352,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -428,7 +363,6 @@
|
|||
"torchvision",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"zmq"
|
||||
],
|
||||
|
@ -437,12 +371,10 @@
|
|||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
|
@ -454,7 +386,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -462,29 +393,24 @@
|
|||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"ollama": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"ollama",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
|
@ -492,7 +418,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -500,65 +425,22 @@
|
|||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"open-benchmark": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"litellm",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlite-vec",
|
||||
"together",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"passthrough": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
|
@ -566,7 +448,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -574,24 +455,20 @@
|
|||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"remote-vllm": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
|
@ -604,7 +481,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -612,7 +488,6 @@
|
|||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
|
@ -649,23 +524,19 @@
|
|||
"tgi": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
|
@ -673,7 +544,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -681,29 +551,24 @@
|
|||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"together": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
|
@ -711,7 +576,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -720,29 +584,24 @@
|
|||
"together",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"vllm-gpu": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
|
@ -750,7 +609,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
@ -758,7 +616,6 @@
|
|||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"vllm",
|
||||
"sentence-transformers --no-deps",
|
||||
|
|
2292
docs/_static/llama-stack-spec.html
vendored
2292
docs/_static/llama-stack-spec.html
vendored
File diff suppressed because it is too large
Load diff
1617
docs/_static/llama-stack-spec.yaml
vendored
1617
docs/_static/llama-stack-spec.yaml
vendored
File diff suppressed because it is too large
Load diff
|
@ -7,11 +7,9 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
|
|||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::nvidia` |
|
||||
| post_training | `remote::nvidia` |
|
||||
| safety | `remote::nvidia` |
|
||||
| scoring | `inline::basic` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `inline::rag-runtime` |
|
||||
| vector_io | `inline::faiss` |
|
||||
|
|
|
@ -14,10 +14,8 @@ The `llamastack/distribution-bedrock` distribution consists of the following pro
|
|||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::bedrock` |
|
||||
| safety | `remote::bedrock` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
|
|
@ -7,10 +7,8 @@ The `llamastack/distribution-cerebras` distribution consists of the following pr
|
|||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::cerebras`, `inline::sentence-transformers` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
|
|
@ -17,10 +17,8 @@ The `llamastack/distribution-fireworks` distribution consists of the following p
|
|||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::fireworks`, `inline::sentence-transformers` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `remote::wolfram-alpha`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
|
|
@ -17,10 +17,8 @@ The `llamastack/distribution-groq` distribution consists of the following provid
|
|||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::groq` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime` |
|
||||
| vector_io | `inline::faiss` |
|
||||
|
|
|
@ -17,10 +17,8 @@ The `llamastack/distribution-meta-reference-gpu` distribution consists of the fo
|
|||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `inline::meta-reference` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
|
|
@ -17,10 +17,8 @@ The `llamastack/distribution-meta-reference-quantized-gpu` distribution consists
|
|||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `inline::meta-reference-quantized` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
|
|
@ -17,10 +17,8 @@ The `llamastack/distribution-ollama` distribution consists of the following prov
|
|||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::ollama` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
|
|
@ -17,10 +17,8 @@ The `llamastack/distribution-passthrough` distribution consists of the following
|
|||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::passthrough`, `inline::sentence-transformers` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `remote::wolfram-alpha`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
|
|
@ -16,10 +16,8 @@ The `llamastack/distribution-remote-vllm` distribution consists of the following
|
|||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::vllm`, `inline::sentence-transformers` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
|
|
@ -18,10 +18,8 @@ The `llamastack/distribution-tgi` distribution consists of the following provide
|
|||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::tgi`, `inline::sentence-transformers` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
|
|
@ -17,10 +17,8 @@ The `llamastack/distribution-together` distribution consists of the following pr
|
|||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::together`, `inline::sentence-transformers` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
|
|
@ -12,11 +12,17 @@ from llama_stack.schema_utils import json_schema_type, webmethod
|
|||
|
||||
|
||||
class CommonBenchmarkFields(BaseModel):
|
||||
"""
|
||||
:param dataset_id: The ID of the dataset to used to run the benchmark.
|
||||
:param grader_ids: The grader ids to use for this benchmark.
|
||||
:param metadata: Metadata for this benchmark for additional descriptions.
|
||||
"""
|
||||
|
||||
dataset_id: str
|
||||
scoring_functions: List[str]
|
||||
grader_ids: List[str]
|
||||
metadata: Dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Metadata for this evaluation task",
|
||||
description="Metadata for this benchmark",
|
||||
)
|
||||
|
||||
|
||||
|
@ -45,22 +51,46 @@ class ListBenchmarksResponse(BaseModel):
|
|||
|
||||
@runtime_checkable
|
||||
class Benchmarks(Protocol):
|
||||
@webmethod(route="/eval/benchmarks", method="GET")
|
||||
async def list_benchmarks(self) -> ListBenchmarksResponse: ...
|
||||
@webmethod(route="/benchmarks", method="POST")
|
||||
async def register_benchmark(
|
||||
self,
|
||||
dataset_id: str,
|
||||
grader_ids: List[str],
|
||||
benchmark_id: Optional[str] = None,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
) -> Benchmark:
|
||||
"""
|
||||
Register a new benchmark. A benchmark consists of a dataset id and a list of grader ids.
|
||||
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}", method="GET")
|
||||
:param dataset_id: The ID of the dataset to be used to run the benchmark. ID obtained through `datasets.register()`
|
||||
:param grader_ids: List of grader ids to use for this benchmark. ID obtained through `graders.register()`
|
||||
:param benchmark_id: (Optional) The ID of the benchmark to register. If not provided, an ID will be generated.
|
||||
:param metadata: (Optional) Metadata for this benchmark for additional descriptions.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/benchmarks", method="GET")
|
||||
async def list_benchmarks(self) -> ListBenchmarksResponse:
|
||||
"""
|
||||
List all benchmarks.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/benchmarks/{benchmark_id}", method="GET")
|
||||
async def get_benchmark(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
) -> Benchmark: ...
|
||||
) -> Benchmark:
|
||||
"""
|
||||
Get a benchmark by ID.
|
||||
|
||||
@webmethod(route="/eval/benchmarks", method="POST")
|
||||
async def register_benchmark(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
dataset_id: str,
|
||||
scoring_functions: List[str],
|
||||
provider_benchmark_id: Optional[str] = None,
|
||||
provider_id: Optional[str] = None,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
) -> None: ...
|
||||
:param benchmark_id: The ID of the benchmark to get.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/benchmarks/{benchmark_id}", method="DELETE")
|
||||
async def unregister_benchmark(self, benchmark_id: str) -> None:
|
||||
"""
|
||||
Unregister a benchmark by ID.
|
||||
"""
|
||||
...
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
@ -10,6 +11,18 @@ from pydantic import BaseModel
|
|||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Job(BaseModel):
|
||||
# NOTE: this will be DEPRECATED in favour of CommonJobFields
|
||||
job_id: str
|
||||
|
||||
|
||||
class JobType(Enum):
|
||||
batch_inference = "batch_inference"
|
||||
evaluation = "evaluation"
|
||||
finetuning = "finetuning"
|
||||
|
||||
|
||||
class JobStatus(Enum):
|
||||
completed = "completed"
|
||||
in_progress = "in_progress"
|
||||
|
@ -19,6 +32,17 @@ class JobStatus(Enum):
|
|||
|
||||
|
||||
@json_schema_type
|
||||
class Job(BaseModel):
|
||||
job_id: str
|
||||
class CommonJobFields(BaseModel):
|
||||
"""Common fields for all jobs.
|
||||
:param id: The ID of the job.
|
||||
:param status: The status of the job.
|
||||
:param created_at: The time the job was created.
|
||||
:param completed_at: The time the job completed.
|
||||
:param error: If status of the job is failed, this will contain the error message.
|
||||
"""
|
||||
|
||||
id: str
|
||||
status: JobStatus
|
||||
created_at: datetime
|
||||
completed_at: datetime | None = None
|
||||
error: str | None = None
|
||||
|
|
|
@ -20,10 +20,9 @@ class Api(Enum):
|
|||
agents = "agents"
|
||||
vector_io = "vector_io"
|
||||
datasetio = "datasetio"
|
||||
scoring = "scoring"
|
||||
eval = "eval"
|
||||
post_training = "post_training"
|
||||
tool_runtime = "tool_runtime"
|
||||
evaluation = "evaluation"
|
||||
|
||||
telemetry = "telemetry"
|
||||
|
||||
|
@ -31,7 +30,6 @@ class Api(Enum):
|
|||
shields = "shields"
|
||||
vector_dbs = "vector_dbs"
|
||||
datasets = "datasets"
|
||||
scoring_functions = "scoring_functions"
|
||||
benchmarks = "benchmarks"
|
||||
tool_groups = "tool_groups"
|
||||
files = "files"
|
||||
|
|
|
@ -1,143 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, List, Literal, Optional, Protocol, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from llama_stack.apis.agents import AgentConfig
|
||||
from llama_stack.apis.common.job_types import Job
|
||||
from llama_stack.apis.inference import SamplingParams, SystemMessage
|
||||
from llama_stack.apis.scoring import ScoringResult
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ModelCandidate(BaseModel):
|
||||
"""A model candidate for evaluation.
|
||||
|
||||
:param model: The model ID to evaluate.
|
||||
:param sampling_params: The sampling parameters for the model.
|
||||
:param system_message: (Optional) The system message providing instructions or context to the model.
|
||||
"""
|
||||
|
||||
type: Literal["model"] = "model"
|
||||
model: str
|
||||
sampling_params: SamplingParams
|
||||
system_message: Optional[SystemMessage] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentCandidate(BaseModel):
|
||||
"""An agent candidate for evaluation.
|
||||
|
||||
:param config: The configuration for the agent candidate.
|
||||
"""
|
||||
|
||||
type: Literal["agent"] = "agent"
|
||||
config: AgentConfig
|
||||
|
||||
|
||||
EvalCandidate = Annotated[Union[ModelCandidate, AgentCandidate], Field(discriminator="type")]
|
||||
register_schema(EvalCandidate, name="EvalCandidate")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class BenchmarkConfig(BaseModel):
|
||||
"""A benchmark configuration for evaluation.
|
||||
|
||||
:param eval_candidate: The candidate to evaluate.
|
||||
:param scoring_params: Map between scoring function id and parameters for each scoring function you want to run
|
||||
:param num_examples: (Optional) The number of examples to evaluate. If not provided, all examples in the dataset will be evaluated
|
||||
"""
|
||||
|
||||
eval_candidate: EvalCandidate
|
||||
scoring_params: Dict[str, ScoringFnParams] = Field(
|
||||
description="Map between scoring function id and parameters for each scoring function you want to run",
|
||||
default_factory=dict,
|
||||
)
|
||||
num_examples: Optional[int] = Field(
|
||||
description="Number of examples to evaluate (useful for testing), if not provided, all examples in the dataset will be evaluated",
|
||||
default=None,
|
||||
)
|
||||
# we could optinally add any specific dataset config here
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EvaluateResponse(BaseModel):
|
||||
"""The response from an evaluation.
|
||||
|
||||
:param generations: The generations from the evaluation.
|
||||
:param scores: The scores from the evaluation.
|
||||
"""
|
||||
|
||||
generations: List[Dict[str, Any]]
|
||||
# each key in the dict is a scoring function name
|
||||
scores: Dict[str, ScoringResult]
|
||||
|
||||
|
||||
class Eval(Protocol):
|
||||
"""Llama Stack Evaluation API for running evaluations on model and agent candidates."""
|
||||
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST")
|
||||
async def run_eval(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
benchmark_config: BenchmarkConfig,
|
||||
) -> Job:
|
||||
"""Run an evaluation on a benchmark.
|
||||
|
||||
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
||||
:param benchmark_config: The configuration for the benchmark.
|
||||
:return: The job that was created to run the evaluation.
|
||||
"""
|
||||
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}/evaluations", method="POST")
|
||||
async def evaluate_rows(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
scoring_functions: List[str],
|
||||
benchmark_config: BenchmarkConfig,
|
||||
) -> EvaluateResponse:
|
||||
"""Evaluate a list of rows on a benchmark.
|
||||
|
||||
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
||||
:param input_rows: The rows to evaluate.
|
||||
:param scoring_functions: The scoring functions to use for the evaluation.
|
||||
:param benchmark_config: The configuration for the benchmark.
|
||||
:return: EvaluateResponse object containing generations and scores
|
||||
"""
|
||||
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="GET")
|
||||
async def job_status(self, benchmark_id: str, job_id: str) -> Job:
|
||||
"""Get the status of a job.
|
||||
|
||||
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
||||
:param job_id: The ID of the job to get the status of.
|
||||
:return: The status of the evaluationjob.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="DELETE")
|
||||
async def job_cancel(self, benchmark_id: str, job_id: str) -> None:
|
||||
"""Cancel a job.
|
||||
|
||||
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
||||
:param job_id: The ID of the job to cancel.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result", method="GET")
|
||||
async def job_result(self, benchmark_id: str, job_id: str) -> EvaluateResponse:
|
||||
"""Get the result of a job.
|
||||
|
||||
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
||||
:param job_id: The ID of the job to get the result of.
|
||||
:return: The result of the job.
|
||||
"""
|
|
@ -4,4 +4,4 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .scoring import * # noqa: F401 F403
|
||||
from .evaluation import * # noqa: F401 F403
|
155
llama_stack/apis/evaluation/evaluation.py
Normal file
155
llama_stack/apis/evaluation/evaluation.py
Normal file
|
@ -0,0 +1,155 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict, List, Literal, Optional, Protocol, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from llama_stack.apis.agents import AgentConfig
|
||||
from llama_stack.apis.common.job_types import CommonJobFields, JobType
|
||||
from llama_stack.apis.datasets import DataSource
|
||||
from llama_stack.apis.inference import SamplingParams, SystemMessage
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ModelCandidate(BaseModel):
|
||||
"""A model candidate for evaluation.
|
||||
|
||||
:param model: The model ID to evaluate.
|
||||
:param sampling_params: The sampling parameters for the model.
|
||||
:param system_message: (Optional) The system message providing instructions or context to the model.
|
||||
"""
|
||||
|
||||
type: Literal["model"] = "model"
|
||||
model_id: str
|
||||
sampling_params: SamplingParams
|
||||
system_message: Optional[SystemMessage] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentCandidate(BaseModel):
|
||||
"""An agent candidate for evaluation.
|
||||
|
||||
:param config: The configuration for the agent candidate.
|
||||
"""
|
||||
|
||||
type: Literal["agent"] = "agent"
|
||||
agent_config: AgentConfig
|
||||
|
||||
|
||||
EvaluationCandidate = register_schema(
|
||||
Annotated[Union[ModelCandidate, AgentCandidate], Field(discriminator="type")],
|
||||
name="EvaluationCandidate",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EvaluationTask(BaseModel):
|
||||
"""
|
||||
A task for evaluation. To specify a task, one of the following must be provided:
|
||||
- `benchmark_id`: Run evaluation task against a benchmark_id. Use this when you have a curated dataset and have settled on the graders.
|
||||
- `dataset_id` and `grader_ids`: Run evaluation task against a dataset_id and a list of grader_ids. Use this when you have datasets and / or are iterating on your graders.
|
||||
- `data_source` and `grader_ids`: Run evaluation task against a data source (e.g. rows, uri, etc.) and a list of grader_ids. Prefer this when you are early in your evaluation cycle and experimenting much more with your data and graders.
|
||||
|
||||
:param benchmark_id: The benchmark ID to evaluate.
|
||||
:param dataset_id: The dataset ID to evaluate.
|
||||
:param data_source: The data source to evaluate.
|
||||
:param grader_ids: The grader IDs to evaluate.
|
||||
"""
|
||||
|
||||
benchmark_id: Optional[str] = None
|
||||
dataset_id: Optional[str] = None
|
||||
data_source: Optional[DataSource] = None
|
||||
grader_ids: Optional[List[str]] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EvaluationJob(CommonJobFields):
|
||||
type: Literal[JobType.evaluation.value] = JobType.evaluation.value
|
||||
|
||||
# input params for the submitted evaluation job
|
||||
task: EvaluationTask
|
||||
candidate: EvaluationCandidate
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EvaluationResponse(BaseModel):
|
||||
"""
|
||||
A response to an inline evaluation.
|
||||
|
||||
:param result_rows: The result data containing inputs, generations and grades in each row.
|
||||
:param grades: Map of grader id to aggregated value.
|
||||
"""
|
||||
|
||||
result_rows: List[Dict[str, Any]]
|
||||
grades: Dict[str, Any]
|
||||
|
||||
|
||||
class Evaluation(Protocol):
|
||||
@webmethod(route="/evaluation/run", method="POST")
|
||||
async def run(
|
||||
self,
|
||||
task: EvaluationTask,
|
||||
candidate: EvaluationCandidate,
|
||||
) -> EvaluationJob:
|
||||
"""
|
||||
Schedule a full evaluation job, by generating results using candidate and grading them.
|
||||
|
||||
:param task: The task to evaluate. To specify a task, one of the following must be provided:
|
||||
- `benchmark_id`: Run evaluation task against a benchmark_id
|
||||
- `dataset_id` and `grader_ids`: Run evaluation task against a dataset_id and a list of grader_ids
|
||||
- `data_source` and `grader_ids`: Run evaluation task against a data source (e.g. rows, uri, etc.) and a list of grader_ids
|
||||
:param candidate: The candidate to evaluate.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/evaluation/run_sync", method="POST")
|
||||
async def run_sync(
|
||||
self,
|
||||
task: EvaluationTask,
|
||||
candidate: EvaluationCandidate,
|
||||
) -> EvaluationResponse:
|
||||
"""
|
||||
Run an evaluation synchronously, i.e., without scheduling a job".
|
||||
You should use this for quick testing, or when the number of rows is limited. Some implementations may have stricter restrictions on inputs which will be accepted.
|
||||
|
||||
:param task: The task to evaluate. To specify a task, one of the following must be provided:
|
||||
- `benchmark_id`: Run evaluation task against a benchmark_id
|
||||
- `dataset_id` and `grader_ids`: Run evaluation task against a dataset_id and a list of grader_ids
|
||||
- `data_source` and `grader_ids`: Run evaluation task against a data source (e.g. rows, uri, etc.) and a list of grader_ids
|
||||
:param candidate: The candidate to evaluate.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/evaluation/grade", method="POST")
|
||||
async def grade(self, task: EvaluationTask) -> EvaluationJob:
|
||||
"""
|
||||
Schedule a grading job, by grading generated (model or agent) results. The generated results are expected to be in the dataset.
|
||||
|
||||
:param task: The task to evaluate. To specify a task, one of the following must be provided:
|
||||
- `benchmark_id`: Run evaluation task against a benchmark_id
|
||||
- `dataset_id` and `grader_ids`: Run evaluation task against a dataset_id and a list of grader_ids
|
||||
- `data_source` and `grader_ids`: Run evaluation task against a data source (e.g. rows, uri, etc.) and a list of grader_ids
|
||||
|
||||
:return: The evaluation job containing grader scores.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/evaluation/grade_sync", method="POST")
|
||||
async def grade_sync(self, task: EvaluationTask) -> EvaluationResponse:
|
||||
"""
|
||||
Run grading synchronously on generated results, i.e., without scheduling a job.
|
||||
You should use this for quick testing, or when the number of rows is limited. Some implementations may have stricter restrictions on inputs which will be accepted.
|
||||
|
||||
:param task: The task to evaluate. To specify a task, one of the following must be provided:
|
||||
- `benchmark_id`: Run evaluation task against a benchmark_id
|
||||
- `dataset_id` and `grader_ids`: Run evaluation task against a dataset_id and a list of grader_ids
|
||||
- `data_source` and `grader_ids`: Run evaluation task against a data source (e.g. rows, uri, etc.) and a list of grader_ids
|
||||
|
||||
:return: The evaluation job containing grader scores. "generations" is not populated in the response.
|
||||
"""
|
||||
...
|
|
@ -4,4 +4,4 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .eval import * # noqa: F401 F403
|
||||
from .graders import * # noqa: F401 F403
|
217
llama_stack/apis/graders/graders.py
Normal file
217
llama_stack/apis/graders/graders.py
Normal file
|
@ -0,0 +1,217 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import (
|
||||
Annotated,
|
||||
Any,
|
||||
Dict,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Protocol,
|
||||
Union,
|
||||
runtime_checkable,
|
||||
)
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.datasets import DatasetPurpose
|
||||
from llama_stack.apis.resource import Resource
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
|
||||
class GraderType(Enum):
|
||||
"""
|
||||
A type of grader. Each type is a criteria for evaluating answers.
|
||||
|
||||
:cvar llm: Use an LLM to score the answer.
|
||||
:cvar regex_parser: Use a regex parser to score the answer.
|
||||
:cvar equality: Check if the answer is equal to the reference answer.
|
||||
:cvar subset_of: Check if the answer is a subset of the reference answer.
|
||||
:cvar factuality: Check if the answer is factually correct using LLM as judge.
|
||||
:cvar faithfulness: Check if the answer is faithful to the reference answer using LLM as judge.
|
||||
"""
|
||||
|
||||
llm = "llm"
|
||||
regex_parser = "regex_parser"
|
||||
equality = "equality"
|
||||
subset_of = "subset_of"
|
||||
factuality = "factuality"
|
||||
faithfulness = "faithfulness"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class GraderTypeInfo(BaseModel):
|
||||
"""
|
||||
:param type: The type of grader.
|
||||
:param description: A description of the grader type.
|
||||
- E.g. Write your custom judge prompt to score the answer.
|
||||
:param supported_dataset_purposes: The purposes that this grader can be used for.
|
||||
"""
|
||||
|
||||
grader_type: GraderType
|
||||
description: str
|
||||
supported_dataset_purposes: List[DatasetPurpose] = Field(
|
||||
description="The supported purposes (supported dataset schema) that this grader can be used for. E.g. eval/question-answer",
|
||||
default_factory=list,
|
||||
)
|
||||
|
||||
|
||||
class LlmGraderParams(BaseModel):
|
||||
model: str
|
||||
prompt: str
|
||||
score_regexes: List[str]
|
||||
|
||||
|
||||
class RegexParserGraderParams(BaseModel):
|
||||
parsing_regexes: List[str]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class LlmGrader(BaseModel):
|
||||
type: Literal["llm"] = "llm"
|
||||
llm: LlmGraderParams
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RegexParserGrader(BaseModel):
|
||||
type: Literal["regex_parser"] = "regex_parser"
|
||||
regex_parser: RegexParserGraderParams
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EqualityGrader(BaseModel):
|
||||
type: Literal["equality"] = "equality"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class SubsetOfGrader(BaseModel):
|
||||
type: Literal["subset_of"] = "subset_of"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class FactualityGrader(BaseModel):
|
||||
type: Literal["factuality"] = "factuality"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class FaithfulnessGrader(BaseModel):
|
||||
type: Literal["faithfulness"] = "faithfulness"
|
||||
|
||||
|
||||
GraderDefinition = register_schema(
|
||||
Annotated[
|
||||
Union[
|
||||
LlmGrader,
|
||||
RegexParserGrader,
|
||||
EqualityGrader,
|
||||
SubsetOfGrader,
|
||||
FactualityGrader,
|
||||
FaithfulnessGrader,
|
||||
],
|
||||
Field(discriminator="type"),
|
||||
],
|
||||
name="GraderDefinition",
|
||||
)
|
||||
|
||||
|
||||
class CommonGraderFields(BaseModel):
|
||||
grader: GraderDefinition
|
||||
description: Optional[str] = None
|
||||
metadata: Dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Any additional metadata for this definition",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Grader(CommonGraderFields, Resource):
|
||||
type: Literal["grader"] = "grader"
|
||||
|
||||
@property
|
||||
def grader_id(self) -> str:
|
||||
return self.identifier
|
||||
|
||||
@property
|
||||
def provider_grader_id(self) -> str:
|
||||
return self.provider_resource_id
|
||||
|
||||
|
||||
class GraderInput(CommonGraderFields, BaseModel):
|
||||
grader_id: str
|
||||
provider_id: Optional[str] = None
|
||||
provider_grader_id: Optional[str] = None
|
||||
|
||||
|
||||
class ListGradersResponse(BaseModel):
|
||||
data: List[Grader]
|
||||
|
||||
|
||||
class ListGraderTypesResponse(BaseModel):
|
||||
data: List[GraderTypeInfo]
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class Graders(Protocol):
|
||||
@webmethod(route="/graders", method="POST")
|
||||
async def register_grader(
|
||||
self,
|
||||
grader: GraderDefinition,
|
||||
grader_id: Optional[str] = None,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
) -> Grader:
|
||||
"""
|
||||
Register a new grader.
|
||||
:param grader: The grader definition, E.g.
|
||||
- {
|
||||
"type": "llm",
|
||||
"llm": {
|
||||
"model": "llama-405b",
|
||||
"prompt": "You are a judge. Score the answer based on the question. {question} {answer}",
|
||||
}
|
||||
}
|
||||
:param grader_id: (Optional) The ID of the grader. If not provided, a random ID will be generated.
|
||||
:param metadata: (Optional) Any additional metadata for this grader.
|
||||
- E.g. {
|
||||
"description": "A grader that scores the answer based on the question.",
|
||||
}
|
||||
:return: The registered grader.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/graders", method="GET")
|
||||
async def list_graders(self) -> ListGradersResponse:
|
||||
"""
|
||||
List all graders.
|
||||
:return: A list of graders.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/graders/{grader_id:path}", method="GET")
|
||||
async def get_grader(self, grader_id: str) -> Grader:
|
||||
"""
|
||||
Get a grader by ID.
|
||||
:param grader_id: The ID of the grader.
|
||||
:return: The grader.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/graders/{grader_id:path}", method="DELETE")
|
||||
async def unregister_grader(self, grader_id: str) -> None:
|
||||
"""
|
||||
Unregister a grader by ID.
|
||||
:param grader_id: The ID of the grader.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/graders/types", method="GET")
|
||||
async def list_grader_types(self) -> ListGraderTypesResponse:
|
||||
"""
|
||||
List all grader types.
|
||||
:return: A list of grader types and information about the types.
|
||||
"""
|
||||
...
|
|
@ -14,6 +14,8 @@ class ResourceType(Enum):
|
|||
shield = "shield"
|
||||
vector_db = "vector_db"
|
||||
dataset = "dataset"
|
||||
grader = "grader"
|
||||
# TODO: migrate scoring_function -> grader
|
||||
scoring_function = "scoring_function"
|
||||
benchmark = "benchmark"
|
||||
tool = "tool"
|
||||
|
|
|
@ -1,78 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnParams
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
|
||||
# mapping of metric to value
|
||||
ScoringResultRow = Dict[str, Any]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ScoringResult(BaseModel):
|
||||
"""
|
||||
A scoring result for a single row.
|
||||
|
||||
:param score_rows: The scoring result for each row. Each row is a map of column name to value.
|
||||
:param aggregated_results: Map of metric name to aggregated value
|
||||
"""
|
||||
|
||||
score_rows: List[ScoringResultRow]
|
||||
# aggregated metrics to value
|
||||
aggregated_results: Dict[str, Any]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ScoreBatchResponse(BaseModel):
|
||||
dataset_id: Optional[str] = None
|
||||
results: Dict[str, ScoringResult]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ScoreResponse(BaseModel):
|
||||
"""
|
||||
The response from scoring.
|
||||
|
||||
:param results: A map of scoring function name to ScoringResult.
|
||||
"""
|
||||
|
||||
# each key in the dict is a scoring function name
|
||||
results: Dict[str, ScoringResult]
|
||||
|
||||
|
||||
class ScoringFunctionStore(Protocol):
|
||||
def get_scoring_function(self, scoring_fn_id: str) -> ScoringFn: ...
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class Scoring(Protocol):
|
||||
scoring_function_store: ScoringFunctionStore
|
||||
|
||||
@webmethod(route="/scoring/score-batch", method="POST")
|
||||
async def score_batch(
|
||||
self,
|
||||
dataset_id: str,
|
||||
scoring_functions: Dict[str, Optional[ScoringFnParams]],
|
||||
save_results_dataset: bool = False,
|
||||
) -> ScoreBatchResponse: ...
|
||||
|
||||
@webmethod(route="/scoring/score", method="POST")
|
||||
async def score(
|
||||
self,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
scoring_functions: Dict[str, Optional[ScoringFnParams]],
|
||||
) -> ScoreResponse:
|
||||
"""Score a list of rows.
|
||||
|
||||
:param input_rows: The rows to score.
|
||||
:param scoring_functions: The scoring functions to use for the scoring.
|
||||
:return: ScoreResponse object containing rows and aggregated results
|
||||
"""
|
||||
...
|
|
@ -1,7 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .scoring_functions import * # noqa: F401 F403
|
|
@ -1,148 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import (
|
||||
Any,
|
||||
Dict,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Protocol,
|
||||
Union,
|
||||
runtime_checkable,
|
||||
)
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from llama_stack.apis.common.type_system import ParamType
|
||||
from llama_stack.apis.resource import Resource, ResourceType
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
|
||||
# Perhaps more structure can be imposed on these functions. Maybe they could be associated
|
||||
# with standard metrics so they can be rolled up?
|
||||
@json_schema_type
|
||||
class ScoringFnParamsType(Enum):
|
||||
llm_as_judge = "llm_as_judge"
|
||||
regex_parser = "regex_parser"
|
||||
basic = "basic"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AggregationFunctionType(Enum):
|
||||
average = "average"
|
||||
weighted_average = "weighted_average"
|
||||
median = "median"
|
||||
categorical_count = "categorical_count"
|
||||
accuracy = "accuracy"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class LLMAsJudgeScoringFnParams(BaseModel):
|
||||
type: Literal[ScoringFnParamsType.llm_as_judge.value] = ScoringFnParamsType.llm_as_judge.value
|
||||
judge_model: str
|
||||
prompt_template: Optional[str] = None
|
||||
judge_score_regexes: Optional[List[str]] = Field(
|
||||
description="Regexes to extract the answer from generated response",
|
||||
default_factory=list,
|
||||
)
|
||||
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
|
||||
description="Aggregation functions to apply to the scores of each row",
|
||||
default_factory=list,
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RegexParserScoringFnParams(BaseModel):
|
||||
type: Literal[ScoringFnParamsType.regex_parser.value] = ScoringFnParamsType.regex_parser.value
|
||||
parsing_regexes: Optional[List[str]] = Field(
|
||||
description="Regex to extract the answer from generated response",
|
||||
default_factory=list,
|
||||
)
|
||||
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
|
||||
description="Aggregation functions to apply to the scores of each row",
|
||||
default_factory=list,
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class BasicScoringFnParams(BaseModel):
|
||||
type: Literal[ScoringFnParamsType.basic.value] = ScoringFnParamsType.basic.value
|
||||
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
|
||||
description="Aggregation functions to apply to the scores of each row",
|
||||
default_factory=list,
|
||||
)
|
||||
|
||||
|
||||
ScoringFnParams = Annotated[
|
||||
Union[
|
||||
LLMAsJudgeScoringFnParams,
|
||||
RegexParserScoringFnParams,
|
||||
BasicScoringFnParams,
|
||||
],
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(ScoringFnParams, name="ScoringFnParams")
|
||||
|
||||
|
||||
class CommonScoringFnFields(BaseModel):
|
||||
description: Optional[str] = None
|
||||
metadata: Dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Any additional metadata for this definition",
|
||||
)
|
||||
return_type: ParamType = Field(
|
||||
description="The return type of the deterministic function",
|
||||
)
|
||||
params: Optional[ScoringFnParams] = Field(
|
||||
description="The parameters for the scoring function for benchmark eval, these can be overridden for app eval",
|
||||
default=None,
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ScoringFn(CommonScoringFnFields, Resource):
|
||||
type: Literal[ResourceType.scoring_function.value] = ResourceType.scoring_function.value
|
||||
|
||||
@property
|
||||
def scoring_fn_id(self) -> str:
|
||||
return self.identifier
|
||||
|
||||
@property
|
||||
def provider_scoring_fn_id(self) -> str:
|
||||
return self.provider_resource_id
|
||||
|
||||
|
||||
class ScoringFnInput(CommonScoringFnFields, BaseModel):
|
||||
scoring_fn_id: str
|
||||
provider_id: Optional[str] = None
|
||||
provider_scoring_fn_id: Optional[str] = None
|
||||
|
||||
|
||||
class ListScoringFunctionsResponse(BaseModel):
|
||||
data: List[ScoringFn]
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class ScoringFunctions(Protocol):
|
||||
@webmethod(route="/scoring-functions", method="GET")
|
||||
async def list_scoring_functions(self) -> ListScoringFunctionsResponse: ...
|
||||
|
||||
@webmethod(route="/scoring-functions/{scoring_fn_id:path}", method="GET")
|
||||
async def get_scoring_function(self, scoring_fn_id: str, /) -> ScoringFn: ...
|
||||
|
||||
@webmethod(route="/scoring-functions", method="POST")
|
||||
async def register_scoring_function(
|
||||
self,
|
||||
scoring_fn_id: str,
|
||||
description: str,
|
||||
return_type: ParamType,
|
||||
provider_scoring_fn_id: Optional[str] = None,
|
||||
provider_id: Optional[str] = None,
|
||||
params: Optional[ScoringFnParams] = None,
|
||||
) -> None: ...
|
|
@ -11,13 +11,10 @@ from pydantic import BaseModel, Field
|
|||
from llama_stack.apis.benchmarks import Benchmark, BenchmarkInput
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Dataset, DatasetInput
|
||||
from llama_stack.apis.eval import Eval
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.models import Model, ModelInput
|
||||
from llama_stack.apis.resource import Resource
|
||||
from llama_stack.apis.safety import Safety
|
||||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnInput
|
||||
from llama_stack.apis.shields import Shield, ShieldInput
|
||||
from llama_stack.apis.tools import Tool, ToolGroup, ToolGroupInput, ToolRuntime
|
||||
from llama_stack.apis.vector_dbs import VectorDB, VectorDBInput
|
||||
|
@ -125,10 +122,6 @@ class DatasetWithACL(Dataset, ResourceWithACL):
|
|||
pass
|
||||
|
||||
|
||||
class ScoringFnWithACL(ScoringFn, ResourceWithACL):
|
||||
pass
|
||||
|
||||
|
||||
class BenchmarkWithACL(Benchmark, ResourceWithACL):
|
||||
pass
|
||||
|
||||
|
@ -146,7 +139,6 @@ RoutableObject = Union[
|
|||
Shield,
|
||||
VectorDB,
|
||||
Dataset,
|
||||
ScoringFn,
|
||||
Benchmark,
|
||||
Tool,
|
||||
ToolGroup,
|
||||
|
@ -159,7 +151,6 @@ RoutableObjectWithProvider = Annotated[
|
|||
ShieldWithACL,
|
||||
VectorDBWithACL,
|
||||
DatasetWithACL,
|
||||
ScoringFnWithACL,
|
||||
BenchmarkWithACL,
|
||||
ToolWithACL,
|
||||
ToolGroupWithACL,
|
||||
|
@ -172,8 +163,6 @@ RoutedProtocol = Union[
|
|||
Safety,
|
||||
VectorIO,
|
||||
DatasetIO,
|
||||
Scoring,
|
||||
Eval,
|
||||
ToolRuntime,
|
||||
]
|
||||
|
||||
|
@ -301,7 +290,6 @@ a default SQLite store will be used.""",
|
|||
shields: List[ShieldInput] = Field(default_factory=list)
|
||||
vector_dbs: List[VectorDBInput] = Field(default_factory=list)
|
||||
datasets: List[DatasetInput] = Field(default_factory=list)
|
||||
scoring_fns: List[ScoringFnInput] = Field(default_factory=list)
|
||||
benchmarks: List[BenchmarkInput] = Field(default_factory=list)
|
||||
tool_groups: List[ToolGroupInput] = Field(default_factory=list)
|
||||
|
||||
|
|
|
@ -40,23 +40,19 @@ def builtin_automatically_routed_apis() -> List[AutoRoutedApiInfo]:
|
|||
router_api=Api.datasetio,
|
||||
),
|
||||
AutoRoutedApiInfo(
|
||||
routing_table_api=Api.scoring_functions,
|
||||
router_api=Api.scoring,
|
||||
routing_table_api=Api.tool_groups,
|
||||
router_api=Api.tool_runtime,
|
||||
),
|
||||
AutoRoutedApiInfo(
|
||||
routing_table_api=Api.benchmarks,
|
||||
router_api=Api.eval,
|
||||
),
|
||||
AutoRoutedApiInfo(
|
||||
routing_table_api=Api.tool_groups,
|
||||
router_api=Api.tool_runtime,
|
||||
router_api=Api.evaluation,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def providable_apis() -> List[Api]:
|
||||
routing_table_apis = {x.routing_table_api for x in builtin_automatically_routed_apis()}
|
||||
return [api for api in Api if api not in routing_table_apis and api != Api.inspect and api != Api.providers]
|
||||
return [api for api in Api if api not in routing_table_apis and api not in [Api.inspect, Api.providers]]
|
||||
|
||||
|
||||
def get_provider_registry() -> Dict[Api, Dict[str, ProviderSpec]]:
|
||||
|
|
|
@ -11,7 +11,7 @@ from llama_stack.apis.agents import Agents
|
|||
from llama_stack.apis.benchmarks import Benchmarks
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.eval import Eval
|
||||
from llama_stack.apis.evaluation import Evaluation
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.inspect import Inspect
|
||||
|
@ -19,8 +19,6 @@ from llama_stack.apis.models import Models
|
|||
from llama_stack.apis.post_training import PostTraining
|
||||
from llama_stack.apis.providers import Providers as ProvidersAPI
|
||||
from llama_stack.apis.safety import Safety
|
||||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.apis.scoring_functions import ScoringFunctions
|
||||
from llama_stack.apis.shields import Shields
|
||||
from llama_stack.apis.telemetry import Telemetry
|
||||
from llama_stack.apis.tools import ToolGroups, ToolRuntime
|
||||
|
@ -46,7 +44,6 @@ from llama_stack.providers.datatypes import (
|
|||
ProviderSpec,
|
||||
RemoteProviderConfig,
|
||||
RemoteProviderSpec,
|
||||
ScoringFunctionsProtocolPrivate,
|
||||
ShieldsProtocolPrivate,
|
||||
ToolsProtocolPrivate,
|
||||
VectorDBsProtocolPrivate,
|
||||
|
@ -73,13 +70,11 @@ def api_protocol_map() -> Dict[Api, Any]:
|
|||
Api.telemetry: Telemetry,
|
||||
Api.datasetio: DatasetIO,
|
||||
Api.datasets: Datasets,
|
||||
Api.scoring: Scoring,
|
||||
Api.scoring_functions: ScoringFunctions,
|
||||
Api.eval: Eval,
|
||||
Api.benchmarks: Benchmarks,
|
||||
Api.post_training: PostTraining,
|
||||
Api.tool_groups: ToolGroups,
|
||||
Api.tool_runtime: ToolRuntime,
|
||||
Api.evaluation: Evaluation,
|
||||
Api.files: Files,
|
||||
}
|
||||
|
||||
|
@ -91,12 +86,7 @@ def additional_protocols_map() -> Dict[Api, Any]:
|
|||
Api.vector_io: (VectorDBsProtocolPrivate, VectorDBs, Api.vector_dbs),
|
||||
Api.safety: (ShieldsProtocolPrivate, Shields, Api.shields),
|
||||
Api.datasetio: (DatasetsProtocolPrivate, Datasets, Api.datasets),
|
||||
Api.scoring: (
|
||||
ScoringFunctionsProtocolPrivate,
|
||||
ScoringFunctions,
|
||||
Api.scoring_functions,
|
||||
),
|
||||
Api.eval: (BenchmarksProtocolPrivate, Benchmarks, Api.benchmarks),
|
||||
Api.evaluation: (BenchmarksProtocolPrivate, Benchmarks, Api.benchmarks),
|
||||
}
|
||||
|
||||
|
||||
|
@ -119,7 +109,9 @@ async def resolve_impls(
|
|||
2. Sorting them in dependency order.
|
||||
3. Instantiating them with required dependencies.
|
||||
"""
|
||||
routing_table_apis = {x.routing_table_api for x in builtin_automatically_routed_apis()}
|
||||
routing_table_apis = {
|
||||
x.routing_table_api for x in builtin_automatically_routed_apis()
|
||||
}
|
||||
router_apis = {x.router_api for x in builtin_automatically_routed_apis()}
|
||||
|
||||
providers_with_specs = validate_and_prepare_providers(
|
||||
|
@ -127,7 +119,9 @@ async def resolve_impls(
|
|||
)
|
||||
|
||||
apis_to_serve = run_config.apis or set(
|
||||
list(providers_with_specs.keys()) + [x.value for x in routing_table_apis] + [x.value for x in router_apis]
|
||||
list(providers_with_specs.keys())
|
||||
+ [x.value for x in routing_table_apis]
|
||||
+ [x.value for x in router_apis]
|
||||
)
|
||||
|
||||
providers_with_specs.update(specs_for_autorouted_apis(apis_to_serve))
|
||||
|
@ -137,7 +131,9 @@ async def resolve_impls(
|
|||
return await instantiate_providers(sorted_providers, router_apis, dist_registry)
|
||||
|
||||
|
||||
def specs_for_autorouted_apis(apis_to_serve: List[str] | Set[str]) -> Dict[str, Dict[str, ProviderWithSpec]]:
|
||||
def specs_for_autorouted_apis(
|
||||
apis_to_serve: List[str] | Set[str],
|
||||
) -> Dict[str, Dict[str, ProviderWithSpec]]:
|
||||
"""Generates specifications for automatically routed APIs."""
|
||||
specs = {}
|
||||
for info in builtin_automatically_routed_apis():
|
||||
|
@ -179,7 +175,10 @@ def specs_for_autorouted_apis(apis_to_serve: List[str] | Set[str]) -> Dict[str,
|
|||
|
||||
|
||||
def validate_and_prepare_providers(
|
||||
run_config: StackRunConfig, provider_registry: ProviderRegistry, routing_table_apis: Set[Api], router_apis: Set[Api]
|
||||
run_config: StackRunConfig,
|
||||
provider_registry: ProviderRegistry,
|
||||
routing_table_apis: Set[Api],
|
||||
router_apis: Set[Api],
|
||||
) -> Dict[str, Dict[str, ProviderWithSpec]]:
|
||||
"""Validates providers, handles deprecations, and organizes them into a spec dictionary."""
|
||||
providers_with_specs: Dict[str, Dict[str, ProviderWithSpec]] = {}
|
||||
|
@ -187,17 +186,23 @@ def validate_and_prepare_providers(
|
|||
for api_str, providers in run_config.providers.items():
|
||||
api = Api(api_str)
|
||||
if api in routing_table_apis:
|
||||
raise ValueError(f"Provider for `{api_str}` is automatically provided and cannot be overridden")
|
||||
raise ValueError(
|
||||
f"Provider for `{api_str}` is automatically provided and cannot be overridden"
|
||||
)
|
||||
|
||||
specs = {}
|
||||
for provider in providers:
|
||||
if not provider.provider_id or provider.provider_id == "__disabled__":
|
||||
logger.warning(f"Provider `{provider.provider_type}` for API `{api}` is disabled")
|
||||
logger.warning(
|
||||
f"Provider `{provider.provider_type}` for API `{api}` is disabled"
|
||||
)
|
||||
continue
|
||||
|
||||
validate_provider(provider, api, provider_registry)
|
||||
p = provider_registry[api][provider.provider_type]
|
||||
p.deps__ = [a.value for a in p.api_dependencies] + [a.value for a in p.optional_api_dependencies]
|
||||
p.deps__ = [a.value for a in p.api_dependencies] + [
|
||||
a.value for a in p.optional_api_dependencies
|
||||
]
|
||||
spec = ProviderWithSpec(spec=p, **provider.model_dump())
|
||||
specs[provider.provider_id] = spec
|
||||
|
||||
|
@ -207,10 +212,14 @@ def validate_and_prepare_providers(
|
|||
return providers_with_specs
|
||||
|
||||
|
||||
def validate_provider(provider: Provider, api: Api, provider_registry: ProviderRegistry):
|
||||
def validate_provider(
|
||||
provider: Provider, api: Api, provider_registry: ProviderRegistry
|
||||
):
|
||||
"""Validates if the provider is allowed and handles deprecations."""
|
||||
if provider.provider_type not in provider_registry[api]:
|
||||
raise ValueError(f"Provider `{provider.provider_type}` is not available for API `{api}`")
|
||||
raise ValueError(
|
||||
f"Provider `{provider.provider_type}` is not available for API `{api}`"
|
||||
)
|
||||
|
||||
p = provider_registry[api][provider.provider_type]
|
||||
if p.deprecation_error:
|
||||
|
@ -223,7 +232,8 @@ def validate_provider(provider: Provider, api: Api, provider_registry: ProviderR
|
|||
|
||||
|
||||
def sort_providers_by_deps(
|
||||
providers_with_specs: Dict[str, Dict[str, ProviderWithSpec]], run_config: StackRunConfig
|
||||
providers_with_specs: Dict[str, Dict[str, ProviderWithSpec]],
|
||||
run_config: StackRunConfig,
|
||||
) -> List[Tuple[str, ProviderWithSpec]]:
|
||||
"""Sorts providers based on their dependencies."""
|
||||
sorted_providers: List[Tuple[str, ProviderWithSpec]] = topological_sort(
|
||||
|
@ -278,11 +288,15 @@ def sort_providers_by_deps(
|
|||
|
||||
|
||||
async def instantiate_providers(
|
||||
sorted_providers: List[Tuple[str, ProviderWithSpec]], router_apis: Set[Api], dist_registry: DistributionRegistry
|
||||
sorted_providers: List[Tuple[str, ProviderWithSpec]],
|
||||
router_apis: Set[Api],
|
||||
dist_registry: DistributionRegistry,
|
||||
) -> Dict:
|
||||
"""Instantiates providers asynchronously while managing dependencies."""
|
||||
impls: Dict[Api, Any] = {}
|
||||
inner_impls_by_provider_id: Dict[str, Dict[str, Any]] = {f"inner-{x.value}": {} for x in router_apis}
|
||||
inner_impls_by_provider_id: Dict[str, Dict[str, Any]] = {
|
||||
f"inner-{x.value}": {} for x in router_apis
|
||||
}
|
||||
for api_str, provider in sorted_providers:
|
||||
deps = {a: impls[a] for a in provider.spec.api_dependencies}
|
||||
for a in provider.spec.optional_api_dependencies:
|
||||
|
@ -291,7 +305,9 @@ async def instantiate_providers(
|
|||
|
||||
inner_impls = {}
|
||||
if isinstance(provider.spec, RoutingTableProviderSpec):
|
||||
inner_impls = inner_impls_by_provider_id[f"inner-{provider.spec.router_api.value}"]
|
||||
inner_impls = inner_impls_by_provider_id[
|
||||
f"inner-{provider.spec.router_api.value}"
|
||||
]
|
||||
|
||||
impl = await instantiate_provider(provider, deps, inner_impls, dist_registry)
|
||||
|
||||
|
@ -349,7 +365,9 @@ async def instantiate_provider(
|
|||
|
||||
provider_spec = provider.spec
|
||||
if not hasattr(provider_spec, "module"):
|
||||
raise AttributeError(f"ProviderSpec of type {type(provider_spec)} does not have a 'module' attribute")
|
||||
raise AttributeError(
|
||||
f"ProviderSpec of type {type(provider_spec)} does not have a 'module' attribute"
|
||||
)
|
||||
|
||||
module = importlib.import_module(provider_spec.module)
|
||||
args = []
|
||||
|
@ -386,7 +404,10 @@ async def instantiate_provider(
|
|||
# TODO: check compliance for special tool groups
|
||||
# the impl should be for Api.tool_runtime, the name should be the special tool group, the protocol should be the special tool group protocol
|
||||
check_protocol_compliance(impl, protocols[provider_spec.api])
|
||||
if not isinstance(provider_spec, AutoRoutedProviderSpec) and provider_spec.api in additional_protocols:
|
||||
if (
|
||||
not isinstance(provider_spec, AutoRoutedProviderSpec)
|
||||
and provider_spec.api in additional_protocols
|
||||
):
|
||||
additional_api, _, _ = additional_protocols[provider_spec.api]
|
||||
check_protocol_compliance(impl, additional_api)
|
||||
|
||||
|
@ -414,12 +435,19 @@ def check_protocol_compliance(obj: Any, protocol: Any) -> None:
|
|||
obj_params = set(obj_sig.parameters)
|
||||
obj_params.discard("self")
|
||||
if not (proto_params <= obj_params):
|
||||
logger.error(f"Method {name} incompatible proto: {proto_params} vs. obj: {obj_params}")
|
||||
logger.error(
|
||||
f"Method {name} incompatible proto: {proto_params} vs. obj: {obj_params}"
|
||||
)
|
||||
missing_methods.append((name, "signature_mismatch"))
|
||||
else:
|
||||
# Check if the method is actually implemented in the class
|
||||
method_owner = next((cls for cls in mro if name in cls.__dict__), None)
|
||||
if method_owner is None or method_owner.__name__ == protocol.__name__:
|
||||
method_owner = next(
|
||||
(cls for cls in mro if name in cls.__dict__), None
|
||||
)
|
||||
if (
|
||||
method_owner is None
|
||||
or method_owner.__name__ == protocol.__name__
|
||||
):
|
||||
missing_methods.append((name, "not_actually_implemented"))
|
||||
|
||||
if missing_methods:
|
||||
|
|
|
@ -14,7 +14,6 @@ from .routing_tables import (
|
|||
BenchmarksRoutingTable,
|
||||
DatasetsRoutingTable,
|
||||
ModelsRoutingTable,
|
||||
ScoringFunctionsRoutingTable,
|
||||
ShieldsRoutingTable,
|
||||
ToolGroupsRoutingTable,
|
||||
VectorDBsRoutingTable,
|
||||
|
@ -32,7 +31,6 @@ async def get_routing_table_impl(
|
|||
"models": ModelsRoutingTable,
|
||||
"shields": ShieldsRoutingTable,
|
||||
"datasets": DatasetsRoutingTable,
|
||||
"scoring_functions": ScoringFunctionsRoutingTable,
|
||||
"benchmarks": BenchmarksRoutingTable,
|
||||
"tool_groups": ToolGroupsRoutingTable,
|
||||
}
|
||||
|
@ -48,10 +46,9 @@ async def get_routing_table_impl(
|
|||
async def get_auto_router_impl(api: Api, routing_table: RoutingTable, deps: Dict[str, Any]) -> Any:
|
||||
from .routers import (
|
||||
DatasetIORouter,
|
||||
EvalRouter,
|
||||
EvaluationRouter,
|
||||
InferenceRouter,
|
||||
SafetyRouter,
|
||||
ScoringRouter,
|
||||
ToolRuntimeRouter,
|
||||
VectorIORouter,
|
||||
)
|
||||
|
@ -61,9 +58,8 @@ async def get_auto_router_impl(api: Api, routing_table: RoutingTable, deps: Dict
|
|||
"inference": InferenceRouter,
|
||||
"safety": SafetyRouter,
|
||||
"datasetio": DatasetIORouter,
|
||||
"scoring": ScoringRouter,
|
||||
"eval": EvalRouter,
|
||||
"tool_runtime": ToolRuntimeRouter,
|
||||
"evaluation": EvaluationRouter,
|
||||
}
|
||||
api_to_deps = {
|
||||
"inference": {"telemetry": Api.telemetry},
|
||||
|
|
|
@ -7,14 +7,21 @@
|
|||
import time
|
||||
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
|
||||
|
||||
from llama_stack.apis.benchmarks import Benchmark
|
||||
from llama_stack.apis.common.content_types import (
|
||||
URL,
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
)
|
||||
from llama_stack.apis.datasetio import DatasetIO, IterrowsResponse
|
||||
from llama_stack.apis.datasets import DatasetPurpose, DataSource
|
||||
from llama_stack.apis.eval import BenchmarkConfig, Eval, EvaluateResponse, Job
|
||||
from llama_stack.apis.datasets import Dataset, DatasetPurpose, DataSource
|
||||
from llama_stack.apis.evaluation import (
|
||||
Evaluation,
|
||||
EvaluationCandidate,
|
||||
EvaluationJob,
|
||||
EvaluationResponse,
|
||||
EvaluationTask,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseEventType,
|
||||
|
@ -36,12 +43,6 @@ from llama_stack.apis.inference import (
|
|||
)
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.apis.safety import RunShieldResponse, Safety
|
||||
from llama_stack.apis.scoring import (
|
||||
ScoreBatchResponse,
|
||||
ScoreResponse,
|
||||
Scoring,
|
||||
ScoringFnParams,
|
||||
)
|
||||
from llama_stack.apis.shields import Shield
|
||||
from llama_stack.apis.telemetry import MetricEvent, MetricInResponse, Telemetry
|
||||
from llama_stack.apis.tools import (
|
||||
|
@ -481,11 +482,11 @@ class DatasetIORouter(DatasetIO):
|
|||
source: DataSource,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
dataset_id: Optional[str] = None,
|
||||
) -> None:
|
||||
) -> Dataset:
|
||||
logger.debug(
|
||||
f"DatasetIORouter.register_dataset: {purpose=} {source=} {metadata=} {dataset_id=}",
|
||||
)
|
||||
await self.routing_table.register_dataset(
|
||||
return await self.routing_table.register_dataset(
|
||||
purpose=purpose,
|
||||
source=source,
|
||||
metadata=metadata,
|
||||
|
@ -515,135 +516,6 @@ class DatasetIORouter(DatasetIO):
|
|||
)
|
||||
|
||||
|
||||
class ScoringRouter(Scoring):
|
||||
def __init__(
|
||||
self,
|
||||
routing_table: RoutingTable,
|
||||
) -> None:
|
||||
logger.debug("Initializing ScoringRouter")
|
||||
self.routing_table = routing_table
|
||||
|
||||
async def initialize(self) -> None:
|
||||
logger.debug("ScoringRouter.initialize")
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
logger.debug("ScoringRouter.shutdown")
|
||||
pass
|
||||
|
||||
async def score_batch(
|
||||
self,
|
||||
dataset_id: str,
|
||||
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
||||
save_results_dataset: bool = False,
|
||||
) -> ScoreBatchResponse:
|
||||
logger.debug(f"ScoringRouter.score_batch: {dataset_id}")
|
||||
res = {}
|
||||
for fn_identifier in scoring_functions.keys():
|
||||
score_response = await self.routing_table.get_provider_impl(fn_identifier).score_batch(
|
||||
dataset_id=dataset_id,
|
||||
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
|
||||
)
|
||||
res.update(score_response.results)
|
||||
|
||||
if save_results_dataset:
|
||||
raise NotImplementedError("Save results dataset not implemented yet")
|
||||
|
||||
return ScoreBatchResponse(
|
||||
results=res,
|
||||
)
|
||||
|
||||
async def score(
|
||||
self,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
||||
) -> ScoreResponse:
|
||||
logger.debug(f"ScoringRouter.score: {len(input_rows)} rows, {len(scoring_functions)} functions")
|
||||
res = {}
|
||||
# look up and map each scoring function to its provider impl
|
||||
for fn_identifier in scoring_functions.keys():
|
||||
score_response = await self.routing_table.get_provider_impl(fn_identifier).score(
|
||||
input_rows=input_rows,
|
||||
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
|
||||
)
|
||||
res.update(score_response.results)
|
||||
|
||||
return ScoreResponse(results=res)
|
||||
|
||||
|
||||
class EvalRouter(Eval):
|
||||
def __init__(
|
||||
self,
|
||||
routing_table: RoutingTable,
|
||||
) -> None:
|
||||
logger.debug("Initializing EvalRouter")
|
||||
self.routing_table = routing_table
|
||||
|
||||
async def initialize(self) -> None:
|
||||
logger.debug("EvalRouter.initialize")
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
logger.debug("EvalRouter.shutdown")
|
||||
pass
|
||||
|
||||
async def run_eval(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
benchmark_config: BenchmarkConfig,
|
||||
) -> Job:
|
||||
logger.debug(f"EvalRouter.run_eval: {benchmark_id}")
|
||||
return await self.routing_table.get_provider_impl(benchmark_id).run_eval(
|
||||
benchmark_id=benchmark_id,
|
||||
benchmark_config=benchmark_config,
|
||||
)
|
||||
|
||||
async def evaluate_rows(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
scoring_functions: List[str],
|
||||
benchmark_config: BenchmarkConfig,
|
||||
) -> EvaluateResponse:
|
||||
logger.debug(f"EvalRouter.evaluate_rows: {benchmark_id}, {len(input_rows)} rows")
|
||||
return await self.routing_table.get_provider_impl(benchmark_id).evaluate_rows(
|
||||
benchmark_id=benchmark_id,
|
||||
input_rows=input_rows,
|
||||
scoring_functions=scoring_functions,
|
||||
benchmark_config=benchmark_config,
|
||||
)
|
||||
|
||||
async def job_status(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
job_id: str,
|
||||
) -> Job:
|
||||
logger.debug(f"EvalRouter.job_status: {benchmark_id}, {job_id}")
|
||||
return await self.routing_table.get_provider_impl(benchmark_id).job_status(benchmark_id, job_id)
|
||||
|
||||
async def job_cancel(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
job_id: str,
|
||||
) -> None:
|
||||
logger.debug(f"EvalRouter.job_cancel: {benchmark_id}, {job_id}")
|
||||
await self.routing_table.get_provider_impl(benchmark_id).job_cancel(
|
||||
benchmark_id,
|
||||
job_id,
|
||||
)
|
||||
|
||||
async def job_result(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
job_id: str,
|
||||
) -> EvaluateResponse:
|
||||
logger.debug(f"EvalRouter.job_result: {benchmark_id}, {job_id}")
|
||||
return await self.routing_table.get_provider_impl(benchmark_id).job_result(
|
||||
benchmark_id,
|
||||
job_id,
|
||||
)
|
||||
|
||||
|
||||
class ToolRuntimeRouter(ToolRuntime):
|
||||
class RagToolImpl(RAGToolRuntime):
|
||||
def __init__(
|
||||
|
@ -709,3 +581,57 @@ class ToolRuntimeRouter(ToolRuntime):
|
|||
) -> List[ToolDef]:
|
||||
logger.debug(f"ToolRuntimeRouter.list_runtime_tools: {tool_group_id}")
|
||||
return await self.routing_table.get_provider_impl(tool_group_id).list_tools(tool_group_id, mcp_endpoint)
|
||||
|
||||
|
||||
class EvaluationRouter(Evaluation):
|
||||
def __init__(
|
||||
self,
|
||||
routing_table: RoutingTable,
|
||||
) -> None:
|
||||
logger.debug("Initializing EvaluationRouter")
|
||||
self.routing_table = routing_table
|
||||
|
||||
async def initialize(self) -> None:
|
||||
logger.debug("EvaluationRouter.initialize")
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
logger.debug("EvaluationRouter.shutdown")
|
||||
pass
|
||||
|
||||
async def register_benchmark(
|
||||
self,
|
||||
dataset_id: str,
|
||||
grader_ids: List[str],
|
||||
benchmark_id: Optional[str] = None,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
) -> Benchmark:
|
||||
logger.debug(
|
||||
f"EvaluationRouter.register_benchmark: {benchmark_id=} {dataset_id=} {grader_ids=} {metadata=}",
|
||||
)
|
||||
return await self.routing_table.register_benchmark(
|
||||
benchmark_id=benchmark_id,
|
||||
dataset_id=dataset_id,
|
||||
grader_ids=grader_ids,
|
||||
metadata=metadata,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
task: EvaluationTask,
|
||||
candidate: EvaluationCandidate,
|
||||
) -> EvaluationJob:
|
||||
raise NotImplementedError("Run is not implemented yet")
|
||||
|
||||
async def run_sync(
|
||||
self,
|
||||
task: EvaluationTask,
|
||||
candidate: EvaluationCandidate,
|
||||
) -> EvaluationResponse:
|
||||
raise NotImplementedError("Run sync is not implemented yet")
|
||||
|
||||
async def grade(self, task: EvaluationTask) -> EvaluationJob:
|
||||
raise NotImplementedError("Grade is not implemented yet")
|
||||
|
||||
async def grade_sync(self, task: EvaluationTask) -> EvaluationResponse:
|
||||
raise NotImplementedError("Grade sync is not implemented yet")
|
||||
|
|
|
@ -12,7 +12,6 @@ from pydantic import TypeAdapter
|
|||
|
||||
from llama_stack.apis.benchmarks import Benchmark, Benchmarks, ListBenchmarksResponse
|
||||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.common.type_system import ParamType
|
||||
from llama_stack.apis.datasets import (
|
||||
Dataset,
|
||||
DatasetPurpose,
|
||||
|
@ -25,12 +24,6 @@ from llama_stack.apis.datasets import (
|
|||
)
|
||||
from llama_stack.apis.models import ListModelsResponse, Model, Models, ModelType
|
||||
from llama_stack.apis.resource import ResourceType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
ListScoringFunctionsResponse,
|
||||
ScoringFn,
|
||||
ScoringFnParams,
|
||||
ScoringFunctions,
|
||||
)
|
||||
from llama_stack.apis.shields import ListShieldsResponse, Shield, Shields
|
||||
from llama_stack.apis.tools import (
|
||||
ListToolGroupsResponse,
|
||||
|
@ -50,7 +43,6 @@ from llama_stack.distribution.datatypes import (
|
|||
RoutableObject,
|
||||
RoutableObjectWithProvider,
|
||||
RoutedProtocol,
|
||||
ScoringFnWithACL,
|
||||
ShieldWithACL,
|
||||
ToolGroupWithACL,
|
||||
ToolWithACL,
|
||||
|
@ -81,10 +73,6 @@ async def register_object_with_provider(obj: RoutableObject, p: Any) -> Routable
|
|||
return await p.register_vector_db(obj)
|
||||
elif api == Api.datasetio:
|
||||
return await p.register_dataset(obj)
|
||||
elif api == Api.scoring:
|
||||
return await p.register_scoring_function(obj)
|
||||
elif api == Api.eval:
|
||||
return await p.register_benchmark(obj)
|
||||
elif api == Api.tool_runtime:
|
||||
return await p.register_tool(obj)
|
||||
else:
|
||||
|
@ -130,7 +118,7 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
await self.dist_registry.register(obj)
|
||||
|
||||
# Register all objects from providers
|
||||
for pid, p in self.impls_by_provider_id.items():
|
||||
for _pid, p in self.impls_by_provider_id.items():
|
||||
api = get_impl_api(p)
|
||||
if api == Api.inference:
|
||||
p.model_store = self
|
||||
|
@ -140,12 +128,6 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
p.vector_db_store = self
|
||||
elif api == Api.datasetio:
|
||||
p.dataset_store = self
|
||||
elif api == Api.scoring:
|
||||
p.scoring_function_store = self
|
||||
scoring_functions = await p.list_scoring_functions()
|
||||
await add_objects(scoring_functions, pid, ScoringFn)
|
||||
elif api == Api.eval:
|
||||
p.benchmark_store = self
|
||||
elif api == Api.tool_runtime:
|
||||
p.tool_store = self
|
||||
|
||||
|
@ -163,8 +145,6 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
return ("VectorIO", "vector_db")
|
||||
elif isinstance(self, DatasetsRoutingTable):
|
||||
return ("DatasetIO", "dataset")
|
||||
elif isinstance(self, ScoringFunctionsRoutingTable):
|
||||
return ("Scoring", "scoring_function")
|
||||
elif isinstance(self, BenchmarksRoutingTable):
|
||||
return ("Eval", "benchmark")
|
||||
elif isinstance(self, ToolGroupsRoutingTable):
|
||||
|
@ -457,46 +437,6 @@ class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
|
|||
await self.unregister_object(dataset)
|
||||
|
||||
|
||||
class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, ScoringFunctions):
|
||||
async def list_scoring_functions(self) -> ListScoringFunctionsResponse:
|
||||
return ListScoringFunctionsResponse(data=await self.get_all_with_type(ResourceType.scoring_function.value))
|
||||
|
||||
async def get_scoring_function(self, scoring_fn_id: str) -> ScoringFn:
|
||||
scoring_fn = await self.get_object_by_identifier("scoring_function", scoring_fn_id)
|
||||
if scoring_fn is None:
|
||||
raise ValueError(f"Scoring function '{scoring_fn_id}' not found")
|
||||
return scoring_fn
|
||||
|
||||
async def register_scoring_function(
|
||||
self,
|
||||
scoring_fn_id: str,
|
||||
description: str,
|
||||
return_type: ParamType,
|
||||
provider_scoring_fn_id: Optional[str] = None,
|
||||
provider_id: Optional[str] = None,
|
||||
params: Optional[ScoringFnParams] = None,
|
||||
) -> None:
|
||||
if provider_scoring_fn_id is None:
|
||||
provider_scoring_fn_id = scoring_fn_id
|
||||
if provider_id is None:
|
||||
if len(self.impls_by_provider_id) == 1:
|
||||
provider_id = list(self.impls_by_provider_id.keys())[0]
|
||||
else:
|
||||
raise ValueError(
|
||||
"No provider specified and multiple providers available. Please specify a provider_id."
|
||||
)
|
||||
scoring_fn = ScoringFnWithACL(
|
||||
identifier=scoring_fn_id,
|
||||
description=description,
|
||||
return_type=return_type,
|
||||
provider_resource_id=provider_scoring_fn_id,
|
||||
provider_id=provider_id,
|
||||
params=params,
|
||||
)
|
||||
scoring_fn.provider_id = provider_id
|
||||
await self.register_object(scoring_fn)
|
||||
|
||||
|
||||
class BenchmarksRoutingTable(CommonRoutingTableImpl, Benchmarks):
|
||||
async def list_benchmarks(self) -> ListBenchmarksResponse:
|
||||
return ListBenchmarksResponse(data=await self.get_all_with_type("benchmark"))
|
||||
|
@ -507,35 +447,38 @@ class BenchmarksRoutingTable(CommonRoutingTableImpl, Benchmarks):
|
|||
raise ValueError(f"Benchmark '{benchmark_id}' not found")
|
||||
return benchmark
|
||||
|
||||
async def unregister_benchmark(self, benchmark_id: str) -> None:
|
||||
benchmark = await self.get_benchmark(benchmark_id)
|
||||
if benchmark is None:
|
||||
raise ValueError(f"Benchmark {benchmark_id} not found")
|
||||
await self.unregister_object(benchmark)
|
||||
|
||||
async def register_benchmark(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
dataset_id: str,
|
||||
scoring_functions: List[str],
|
||||
grader_ids: List[str],
|
||||
benchmark_id: Optional[str] = None,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
provider_benchmark_id: Optional[str] = None,
|
||||
provider_id: Optional[str] = None,
|
||||
) -> None:
|
||||
) -> Benchmark:
|
||||
if metadata is None:
|
||||
metadata = {}
|
||||
if provider_id is None:
|
||||
if len(self.impls_by_provider_id) == 1:
|
||||
|
||||
# TODO (xiyan): we will need a way to infer provider_id for evaluation
|
||||
# keep it as meta-reference for now
|
||||
if len(self.impls_by_provider_id) == 0:
|
||||
raise ValueError("No evaluation providers available. Please configure an evaluation provider.")
|
||||
provider_id = list(self.impls_by_provider_id.keys())[0]
|
||||
else:
|
||||
raise ValueError(
|
||||
"No provider specified and multiple providers available. Please specify a provider_id."
|
||||
)
|
||||
if provider_benchmark_id is None:
|
||||
provider_benchmark_id = benchmark_id
|
||||
|
||||
benchmark = BenchmarkWithACL(
|
||||
identifier=benchmark_id,
|
||||
dataset_id=dataset_id,
|
||||
scoring_functions=scoring_functions,
|
||||
grader_ids=grader_ids,
|
||||
metadata=metadata,
|
||||
provider_id=provider_id,
|
||||
provider_resource_id=provider_benchmark_id,
|
||||
provider_resource_id=benchmark_id,
|
||||
)
|
||||
await self.register_object(benchmark)
|
||||
return benchmark
|
||||
|
||||
|
||||
class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
|
||||
|
|
|
@ -17,16 +17,15 @@ from llama_stack.apis.batch_inference import BatchInference
|
|||
from llama_stack.apis.benchmarks import Benchmarks
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.eval import Eval
|
||||
from llama_stack.apis.evaluation import Evaluation
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.graders import Graders
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.inspect import Inspect
|
||||
from llama_stack.apis.models import Models
|
||||
from llama_stack.apis.post_training import PostTraining
|
||||
from llama_stack.apis.providers import Providers
|
||||
from llama_stack.apis.safety import Safety
|
||||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.apis.scoring_functions import ScoringFunctions
|
||||
from llama_stack.apis.shields import Shields
|
||||
from llama_stack.apis.synthetic_data_generation import SyntheticDataGeneration
|
||||
from llama_stack.apis.telemetry import Telemetry
|
||||
|
@ -56,10 +55,7 @@ class LlamaStack(
|
|||
Telemetry,
|
||||
PostTraining,
|
||||
VectorIO,
|
||||
Eval,
|
||||
Benchmarks,
|
||||
Scoring,
|
||||
ScoringFunctions,
|
||||
DatasetIO,
|
||||
Models,
|
||||
Shields,
|
||||
|
@ -68,6 +64,8 @@ class LlamaStack(
|
|||
ToolRuntime,
|
||||
RAGToolRuntime,
|
||||
Files,
|
||||
Graders,
|
||||
Evaluation,
|
||||
):
|
||||
pass
|
||||
|
||||
|
@ -77,12 +75,6 @@ RESOURCES = [
|
|||
("shields", Api.shields, "register_shield", "list_shields"),
|
||||
("vector_dbs", Api.vector_dbs, "register_vector_db", "list_vector_dbs"),
|
||||
("datasets", Api.datasets, "register_dataset", "list_datasets"),
|
||||
(
|
||||
"scoring_fns",
|
||||
Api.scoring_functions,
|
||||
"register_scoring_function",
|
||||
"list_scoring_functions",
|
||||
),
|
||||
("benchmarks", Api.benchmarks, "register_benchmark", "list_benchmarks"),
|
||||
("tool_groups", Api.tool_groups, "register_tool_group", "list_tool_groups"),
|
||||
]
|
||||
|
|
|
@ -26,7 +26,10 @@ class LlamaStackApi:
|
|||
"""Run scoring on a single row"""
|
||||
if not scoring_params:
|
||||
scoring_params = {fn_id: None for fn_id in scoring_function_ids}
|
||||
return self.client.scoring.score(input_rows=[row], scoring_functions=scoring_params)
|
||||
|
||||
# TODO(xiyan): fix this
|
||||
# return self.client.scoring.score(input_rows=[row], scoring_functions=scoring_params)
|
||||
raise NotImplementedError("Scoring is not implemented")
|
||||
|
||||
|
||||
llama_stack_api = LlamaStackApi()
|
||||
|
|
|
@ -9,7 +9,6 @@ from streamlit_option_menu import option_menu
|
|||
from llama_stack.distribution.ui.page.distribution.datasets import datasets
|
||||
from llama_stack.distribution.ui.page.distribution.eval_tasks import benchmarks
|
||||
from llama_stack.distribution.ui.page.distribution.models import models
|
||||
from llama_stack.distribution.ui.page.distribution.scoring_functions import scoring_functions
|
||||
from llama_stack.distribution.ui.page.distribution.shields import shields
|
||||
from llama_stack.distribution.ui.page.distribution.vector_dbs import vector_dbs
|
||||
|
||||
|
@ -43,8 +42,9 @@ def resources_page():
|
|||
datasets()
|
||||
elif selected_resource == "Models":
|
||||
models()
|
||||
elif selected_resource == "Scoring Functions":
|
||||
scoring_functions()
|
||||
# TODO(xiyan): fix this
|
||||
# elif selected_resource == "Scoring Functions":
|
||||
# scoring_functions()
|
||||
elif selected_resource == "Shields":
|
||||
shields()
|
||||
|
||||
|
|
|
@ -13,7 +13,6 @@ from llama_stack.apis.benchmarks import Benchmark
|
|||
from llama_stack.apis.datasets import Dataset
|
||||
from llama_stack.apis.datatypes import Api
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.apis.scoring_functions import ScoringFn
|
||||
from llama_stack.apis.shields import Shield
|
||||
from llama_stack.apis.tools import Tool
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
|
@ -42,12 +41,6 @@ class DatasetsProtocolPrivate(Protocol):
|
|||
async def unregister_dataset(self, dataset_id: str) -> None: ...
|
||||
|
||||
|
||||
class ScoringFunctionsProtocolPrivate(Protocol):
|
||||
async def list_scoring_functions(self) -> List[ScoringFn]: ...
|
||||
|
||||
async def register_scoring_function(self, scoring_fn: ScoringFn) -> None: ...
|
||||
|
||||
|
||||
class BenchmarksProtocolPrivate(Protocol):
|
||||
async def register_benchmark(self, benchmark: Benchmark) -> None: ...
|
||||
|
||||
|
|
|
@ -1,234 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import json
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from llama_stack.apis.agents import Agents, StepType
|
||||
from llama_stack.apis.benchmarks import Benchmark
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.inference import Inference, SystemMessage, UserMessage
|
||||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.providers.datatypes import BenchmarksProtocolPrivate
|
||||
from llama_stack.providers.inline.agents.meta_reference.agent_instance import (
|
||||
MEMORY_QUERY_TOOL,
|
||||
)
|
||||
from llama_stack.providers.utils.common.data_schema_validator import ColumnName
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
|
||||
from .....apis.common.job_types import Job, JobStatus
|
||||
from .....apis.eval.eval import BenchmarkConfig, Eval, EvaluateResponse
|
||||
from .config import MetaReferenceEvalConfig
|
||||
|
||||
EVAL_TASKS_PREFIX = "benchmarks:"
|
||||
|
||||
|
||||
class MetaReferenceEvalImpl(
|
||||
Eval,
|
||||
BenchmarksProtocolPrivate,
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
config: MetaReferenceEvalConfig,
|
||||
datasetio_api: DatasetIO,
|
||||
datasets_api: Datasets,
|
||||
scoring_api: Scoring,
|
||||
inference_api: Inference,
|
||||
agents_api: Agents,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.datasetio_api = datasetio_api
|
||||
self.datasets_api = datasets_api
|
||||
self.scoring_api = scoring_api
|
||||
self.inference_api = inference_api
|
||||
self.agents_api = agents_api
|
||||
|
||||
# TODO: assume sync job, will need jobs API for async scheduling
|
||||
self.jobs = {}
|
||||
|
||||
self.benchmarks = {}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
# Load existing benchmarks from kvstore
|
||||
start_key = EVAL_TASKS_PREFIX
|
||||
end_key = f"{EVAL_TASKS_PREFIX}\xff"
|
||||
stored_benchmarks = await self.kvstore.range(start_key, end_key)
|
||||
|
||||
for benchmark in stored_benchmarks:
|
||||
benchmark = Benchmark.model_validate_json(benchmark)
|
||||
self.benchmarks[benchmark.identifier] = benchmark
|
||||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
async def register_benchmark(self, task_def: Benchmark) -> None:
|
||||
# Store in kvstore
|
||||
key = f"{EVAL_TASKS_PREFIX}{task_def.identifier}"
|
||||
await self.kvstore.set(
|
||||
key=key,
|
||||
value=task_def.model_dump_json(),
|
||||
)
|
||||
self.benchmarks[task_def.identifier] = task_def
|
||||
|
||||
async def run_eval(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
benchmark_config: BenchmarkConfig,
|
||||
) -> Job:
|
||||
task_def = self.benchmarks[benchmark_id]
|
||||
dataset_id = task_def.dataset_id
|
||||
scoring_functions = task_def.scoring_functions
|
||||
|
||||
# TODO (xiyan): validate dataset schema
|
||||
# dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
||||
|
||||
all_rows = await self.datasetio_api.iterrows(
|
||||
dataset_id=dataset_id,
|
||||
limit=(-1 if benchmark_config.num_examples is None else benchmark_config.num_examples),
|
||||
)
|
||||
res = await self.evaluate_rows(
|
||||
benchmark_id=benchmark_id,
|
||||
input_rows=all_rows.data,
|
||||
scoring_functions=scoring_functions,
|
||||
benchmark_config=benchmark_config,
|
||||
)
|
||||
|
||||
# TODO: currently needs to wait for generation before returning
|
||||
# need job scheduler queue (ray/celery) w/ jobs api
|
||||
job_id = str(len(self.jobs))
|
||||
self.jobs[job_id] = res
|
||||
return Job(job_id=job_id, status=JobStatus.completed)
|
||||
|
||||
async def _run_agent_generation(
|
||||
self, input_rows: List[Dict[str, Any]], benchmark_config: BenchmarkConfig
|
||||
) -> List[Dict[str, Any]]:
|
||||
candidate = benchmark_config.eval_candidate
|
||||
create_response = await self.agents_api.create_agent(candidate.config)
|
||||
agent_id = create_response.agent_id
|
||||
|
||||
generations = []
|
||||
for i, x in tqdm(enumerate(input_rows)):
|
||||
assert ColumnName.chat_completion_input.value in x, "Invalid input row"
|
||||
input_messages = json.loads(x[ColumnName.chat_completion_input.value])
|
||||
input_messages = [UserMessage(**x) for x in input_messages if x["role"] == "user"]
|
||||
|
||||
# NOTE: only single-turn agent generation is supported. Create a new session for each input row
|
||||
session_create_response = await self.agents_api.create_agent_session(agent_id, f"session-{i}")
|
||||
session_id = session_create_response.session_id
|
||||
|
||||
turn_request = dict(
|
||||
agent_id=agent_id,
|
||||
session_id=session_id,
|
||||
messages=input_messages,
|
||||
stream=True,
|
||||
)
|
||||
turn_response = [chunk async for chunk in await self.agents_api.create_agent_turn(**turn_request)]
|
||||
final_event = turn_response[-1].event.payload
|
||||
|
||||
# check if there's a memory retrieval step and extract the context
|
||||
memory_rag_context = None
|
||||
for step in final_event.turn.steps:
|
||||
if step.step_type == StepType.tool_execution.value:
|
||||
for tool_response in step.tool_responses:
|
||||
if tool_response.tool_name == MEMORY_QUERY_TOOL:
|
||||
memory_rag_context = " ".join(x.text for x in tool_response.content)
|
||||
|
||||
agent_generation = {}
|
||||
agent_generation[ColumnName.generated_answer.value] = final_event.turn.output_message.content
|
||||
if memory_rag_context:
|
||||
agent_generation[ColumnName.context.value] = memory_rag_context
|
||||
|
||||
generations.append(agent_generation)
|
||||
|
||||
return generations
|
||||
|
||||
async def _run_model_generation(
|
||||
self, input_rows: List[Dict[str, Any]], benchmark_config: BenchmarkConfig
|
||||
) -> List[Dict[str, Any]]:
|
||||
candidate = benchmark_config.eval_candidate
|
||||
assert candidate.sampling_params.max_tokens is not None, "SamplingParams.max_tokens must be provided"
|
||||
|
||||
generations = []
|
||||
for x in tqdm(input_rows):
|
||||
if ColumnName.completion_input.value in x:
|
||||
input_content = json.loads(x[ColumnName.completion_input.value])
|
||||
response = await self.inference_api.completion(
|
||||
model=candidate.model,
|
||||
content=input_content,
|
||||
sampling_params=candidate.sampling_params,
|
||||
)
|
||||
generations.append({ColumnName.generated_answer.value: response.completion_message.content})
|
||||
elif ColumnName.chat_completion_input.value in x:
|
||||
chat_completion_input_json = json.loads(x[ColumnName.chat_completion_input.value])
|
||||
input_messages = [UserMessage(**x) for x in chat_completion_input_json if x["role"] == "user"]
|
||||
messages = []
|
||||
if candidate.system_message:
|
||||
messages.append(candidate.system_message)
|
||||
messages += [SystemMessage(**x) for x in chat_completion_input_json if x["role"] == "system"]
|
||||
messages += input_messages
|
||||
response = await self.inference_api.chat_completion(
|
||||
model_id=candidate.model,
|
||||
messages=messages,
|
||||
sampling_params=candidate.sampling_params,
|
||||
)
|
||||
generations.append({ColumnName.generated_answer.value: response.completion_message.content})
|
||||
else:
|
||||
raise ValueError("Invalid input row")
|
||||
|
||||
return generations
|
||||
|
||||
async def evaluate_rows(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
scoring_functions: List[str],
|
||||
benchmark_config: BenchmarkConfig,
|
||||
) -> EvaluateResponse:
|
||||
candidate = benchmark_config.eval_candidate
|
||||
if candidate.type == "agent":
|
||||
generations = await self._run_agent_generation(input_rows, benchmark_config)
|
||||
elif candidate.type == "model":
|
||||
generations = await self._run_model_generation(input_rows, benchmark_config)
|
||||
else:
|
||||
raise ValueError(f"Invalid candidate type: {candidate.type}")
|
||||
|
||||
# scoring with generated_answer
|
||||
score_input_rows = [
|
||||
input_r | generated_r for input_r, generated_r in zip(input_rows, generations, strict=False)
|
||||
]
|
||||
|
||||
if benchmark_config.scoring_params is not None:
|
||||
scoring_functions_dict = {
|
||||
scoring_fn_id: benchmark_config.scoring_params.get(scoring_fn_id, None)
|
||||
for scoring_fn_id in scoring_functions
|
||||
}
|
||||
else:
|
||||
scoring_functions_dict = {scoring_fn_id: None for scoring_fn_id in scoring_functions}
|
||||
|
||||
score_response = await self.scoring_api.score(
|
||||
input_rows=score_input_rows, scoring_functions=scoring_functions_dict
|
||||
)
|
||||
|
||||
return EvaluateResponse(generations=generations, scores=score_response.results)
|
||||
|
||||
async def job_status(self, benchmark_id: str, job_id: str) -> Job:
|
||||
if job_id in self.jobs:
|
||||
return Job(job_id=job_id, status=JobStatus.completed)
|
||||
|
||||
raise ValueError(f"Job {job_id} not found")
|
||||
|
||||
async def job_cancel(self, benchmark_id: str, job_id: str) -> None:
|
||||
raise NotImplementedError("Job cancel is not implemented yet")
|
||||
|
||||
async def job_result(self, benchmark_id: str, job_id: str) -> EvaluateResponse:
|
||||
job = await self.job_status(benchmark_id, job_id)
|
||||
status = job.status
|
||||
if not status or status != JobStatus.completed:
|
||||
raise ValueError(f"Job is not completed, Status: {status.value}")
|
||||
|
||||
return self.jobs[job_id]
|
|
@ -7,20 +7,19 @@ from typing import Any, Dict
|
|||
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
|
||||
from .config import MetaReferenceEvalConfig
|
||||
from .config import MetaReferenceEvaluationConfig
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
config: MetaReferenceEvalConfig,
|
||||
config: MetaReferenceEvaluationConfig,
|
||||
deps: Dict[Api, Any],
|
||||
):
|
||||
from .eval import MetaReferenceEvalImpl
|
||||
from .evaluation import MetaReferenceEvaluationImpl
|
||||
|
||||
impl = MetaReferenceEvalImpl(
|
||||
impl = MetaReferenceEvaluationImpl(
|
||||
config,
|
||||
deps[Api.datasetio],
|
||||
deps[Api.datasets],
|
||||
deps[Api.scoring],
|
||||
deps[Api.inference],
|
||||
deps[Api.agents],
|
||||
)
|
|
@ -13,7 +13,7 @@ from llama_stack.providers.utils.kvstore.config import (
|
|||
)
|
||||
|
||||
|
||||
class MetaReferenceEvalConfig(BaseModel):
|
||||
class MetaReferenceEvaluationConfig(BaseModel):
|
||||
kvstore: KVStoreConfig
|
||||
|
||||
@classmethod
|
||||
|
@ -21,6 +21,6 @@ class MetaReferenceEvalConfig(BaseModel):
|
|||
return {
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="meta_reference_eval.db",
|
||||
db_name="meta_reference_evaluation.db",
|
||||
)
|
||||
}
|
|
@ -0,0 +1,71 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.agents import Agents
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.providers.datatypes import BenchmarksProtocolPrivate
|
||||
|
||||
from .....apis.benchmarks import Benchmark
|
||||
from .....apis.evaluation.evaluation import (
|
||||
Evaluation,
|
||||
EvaluationCandidate,
|
||||
EvaluationJob,
|
||||
EvaluationResponse,
|
||||
EvaluationTask,
|
||||
)
|
||||
from .config import MetaReferenceEvaluationConfig
|
||||
|
||||
EVAL_TASKS_PREFIX = "benchmarks:"
|
||||
|
||||
|
||||
class MetaReferenceEvaluationImpl(
|
||||
Evaluation,
|
||||
BenchmarksProtocolPrivate,
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
config: MetaReferenceEvaluationConfig,
|
||||
datasetio_api: DatasetIO,
|
||||
datasets_api: Datasets,
|
||||
inference_api: Inference,
|
||||
agents_api: Agents,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.datasetio_api = datasetio_api
|
||||
self.datasets_api = datasets_api
|
||||
self.inference_api = inference_api
|
||||
self.agents_api = agents_api
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def register_benchmark(self, benchmark: Benchmark) -> None:
|
||||
pass
|
||||
|
||||
async def run(
|
||||
self,
|
||||
task: EvaluationTask,
|
||||
candidate: EvaluationCandidate,
|
||||
) -> EvaluationJob:
|
||||
raise NotImplementedError("Run is not implemented yet")
|
||||
|
||||
async def run_sync(
|
||||
self,
|
||||
task: EvaluationTask,
|
||||
candidate: EvaluationCandidate,
|
||||
) -> EvaluationResponse:
|
||||
raise NotImplementedError("Run sync is not implemented yet")
|
||||
|
||||
async def grade(self, task: EvaluationTask) -> EvaluationJob:
|
||||
raise NotImplementedError("Grade is not implemented yet")
|
||||
|
||||
async def grade_sync(self, task: EvaluationTask) -> EvaluationResponse:
|
||||
raise NotImplementedError("Grade sync is not implemented yet")
|
|
@ -1,5 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
|
@ -1,25 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict
|
||||
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
|
||||
from .config import BasicScoringConfig
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
config: BasicScoringConfig,
|
||||
deps: Dict[Api, Any],
|
||||
):
|
||||
from .scoring import BasicScoringImpl
|
||||
|
||||
impl = BasicScoringImpl(
|
||||
config,
|
||||
deps[Api.datasetio],
|
||||
deps[Api.datasets],
|
||||
)
|
||||
await impl.initialize()
|
||||
return impl
|
|
@ -1,14 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class BasicScoringConfig(BaseModel):
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
|
||||
return {}
|
|
@ -1,128 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.scoring import (
|
||||
ScoreBatchResponse,
|
||||
ScoreResponse,
|
||||
Scoring,
|
||||
ScoringResult,
|
||||
)
|
||||
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnParams
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
|
||||
from llama_stack.providers.utils.common.data_schema_validator import (
|
||||
get_valid_schemas,
|
||||
validate_dataset_schema,
|
||||
)
|
||||
|
||||
from .config import BasicScoringConfig
|
||||
from .scoring_fn.bfcl_scoring_fn import BFCLScoringFn
|
||||
from .scoring_fn.docvqa_scoring_fn import DocVQAScoringFn
|
||||
from .scoring_fn.equality_scoring_fn import EqualityScoringFn
|
||||
from .scoring_fn.ifeval_scoring_fn import IfEvalScoringFn
|
||||
from .scoring_fn.regex_parser_math_response_scoring_fn import (
|
||||
RegexParserMathResponseScoringFn,
|
||||
)
|
||||
from .scoring_fn.regex_parser_scoring_fn import RegexParserScoringFn
|
||||
from .scoring_fn.subset_of_scoring_fn import SubsetOfScoringFn
|
||||
|
||||
FIXED_FNS = [
|
||||
EqualityScoringFn,
|
||||
SubsetOfScoringFn,
|
||||
RegexParserScoringFn,
|
||||
RegexParserMathResponseScoringFn,
|
||||
BFCLScoringFn,
|
||||
IfEvalScoringFn,
|
||||
DocVQAScoringFn,
|
||||
]
|
||||
|
||||
|
||||
class BasicScoringImpl(
|
||||
Scoring,
|
||||
ScoringFunctionsProtocolPrivate,
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
config: BasicScoringConfig,
|
||||
datasetio_api: DatasetIO,
|
||||
datasets_api: Datasets,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.datasetio_api = datasetio_api
|
||||
self.datasets_api = datasets_api
|
||||
self.scoring_fn_id_impls = {}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
for fn in FIXED_FNS:
|
||||
impl = fn()
|
||||
for fn_defs in impl.get_supported_scoring_fn_defs():
|
||||
self.scoring_fn_id_impls[fn_defs.identifier] = impl
|
||||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
async def list_scoring_functions(self) -> List[ScoringFn]:
|
||||
scoring_fn_defs_list = [
|
||||
fn_def for impl in self.scoring_fn_id_impls.values() for fn_def in impl.get_supported_scoring_fn_defs()
|
||||
]
|
||||
|
||||
for f in scoring_fn_defs_list:
|
||||
assert f.identifier.startswith("basic"), "All basic scoring fn must have identifier prefixed with 'basic'! "
|
||||
|
||||
return scoring_fn_defs_list
|
||||
|
||||
async def register_scoring_function(self, function_def: ScoringFn) -> None:
|
||||
raise NotImplementedError("Register scoring function not implemented yet")
|
||||
|
||||
async def score_batch(
|
||||
self,
|
||||
dataset_id: str,
|
||||
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
||||
save_results_dataset: bool = False,
|
||||
) -> ScoreBatchResponse:
|
||||
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
||||
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
|
||||
|
||||
all_rows = await self.datasetio_api.iterrows(
|
||||
dataset_id=dataset_id,
|
||||
limit=-1,
|
||||
)
|
||||
res = await self.score(
|
||||
input_rows=all_rows.data,
|
||||
scoring_functions=scoring_functions,
|
||||
)
|
||||
if save_results_dataset:
|
||||
# TODO: persist and register dataset on to server for reading
|
||||
# self.datasets_api.register_dataset()
|
||||
raise NotImplementedError("Save results dataset not implemented yet")
|
||||
|
||||
return ScoreBatchResponse(
|
||||
results=res.results,
|
||||
)
|
||||
|
||||
async def score(
|
||||
self,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
||||
) -> ScoreResponse:
|
||||
res = {}
|
||||
for scoring_fn_id in scoring_functions.keys():
|
||||
if scoring_fn_id not in self.scoring_fn_id_impls:
|
||||
raise ValueError(f"Scoring function {scoring_fn_id} is not supported.")
|
||||
scoring_fn = self.scoring_fn_id_impls[scoring_fn_id]
|
||||
scoring_fn_params = scoring_functions.get(scoring_fn_id, None)
|
||||
score_results = await scoring_fn.score(input_rows, scoring_fn_id, scoring_fn_params)
|
||||
agg_results = await scoring_fn.aggregate(score_results, scoring_fn_id, scoring_fn_params)
|
||||
res[scoring_fn_id] = ScoringResult(
|
||||
score_rows=score_results,
|
||||
aggregated_results=agg_results,
|
||||
)
|
||||
|
||||
return ScoreResponse(
|
||||
results=res,
|
||||
)
|
|
@ -1,5 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
|
@ -1,93 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
import re
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
|
||||
|
||||
from ..utils.bfcl.ast_parser import decode_ast
|
||||
from ..utils.bfcl.checker import ast_checker, is_empty_output
|
||||
from .fn_defs.bfcl import bfcl
|
||||
|
||||
|
||||
def postprocess(x: Dict[str, Any], test_category: str) -> Dict[str, Any]:
|
||||
contain_func_call = False
|
||||
error = None
|
||||
error_type = None
|
||||
checker_result = {}
|
||||
try:
|
||||
prediction = decode_ast(x["generated_answer"], x["language"]) or ""
|
||||
contain_func_call = True
|
||||
# if not is_function_calling_format_output(prediction):
|
||||
if is_empty_output(prediction):
|
||||
contain_func_call = False
|
||||
error = "Did not output in the specified format. Note: the model_result is wrapped in a string to ensure json serializability."
|
||||
error_type = "ast_decoder:decoder_wrong_output_format"
|
||||
else:
|
||||
checker_result = ast_checker(
|
||||
json.loads(x["function"]),
|
||||
prediction,
|
||||
json.loads(x["ground_truth"]),
|
||||
x["language"],
|
||||
test_category=test_category,
|
||||
model_name="",
|
||||
)
|
||||
except Exception as e:
|
||||
prediction = ""
|
||||
error = f"Invalid syntax. Failed to decode AST. {str(e)}"
|
||||
error_type = "ast_decoder:decoder_failed"
|
||||
return {
|
||||
"prediction": prediction,
|
||||
"contain_func_call": contain_func_call,
|
||||
"valid": checker_result.get("valid", False),
|
||||
"error": error or checker_result.get("error", ""),
|
||||
"error_type": error_type or checker_result.get("error_type", ""),
|
||||
}
|
||||
|
||||
|
||||
def gen_valid(x: Dict[str, Any]) -> Dict[str, float]:
|
||||
return {"valid": x["valid"]}
|
||||
|
||||
|
||||
def gen_relevance_acc(x: Dict[str, Any]) -> Dict[str, float]:
|
||||
# This function serves for both relevance and irrelevance tests, which share the exact opposite logic.
|
||||
# If `test_category` is "irrelevance", the model is expected to output no function call.
|
||||
# No function call means either the AST decoding fails (a error message is generated) or the decoded AST does not contain any function call (such as a empty list, `[]`).
|
||||
# If `test_category` is "relevance", the model is expected to output to a function call, and empty list doesn't count as a function call.
|
||||
acc = not x["contain_func_call"] if "irrelevance" in x["id"] else x["contain_func_call"]
|
||||
return {"valid": float(acc)}
|
||||
|
||||
|
||||
class BFCLScoringFn(RegisteredBaseScoringFn):
|
||||
"""
|
||||
A scoring_fn for BFCL
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
self.supported_fn_defs_registry = {
|
||||
bfcl.identifier: bfcl,
|
||||
}
|
||||
|
||||
async def score_row(
|
||||
self,
|
||||
input_row: Dict[str, Any],
|
||||
scoring_fn_identifier: Optional[str] = "bfcl",
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> ScoringResultRow:
|
||||
test_category = re.sub(r"_[0-9_-]+$", "", input_row["id"])
|
||||
score_result = postprocess(input_row, test_category)
|
||||
if test_category in {"irrelevance", "live_relevance", "live_irrelevance"}:
|
||||
score = gen_relevance_acc(score_result)["valid"]
|
||||
else:
|
||||
score = gen_valid(score_result)["valid"]
|
||||
return {
|
||||
"score": float(score),
|
||||
}
|
|
@ -1,240 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
import re
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
|
||||
|
||||
from .fn_defs.docvqa import docvqa
|
||||
|
||||
CONTRACTIONS = {
|
||||
"aint": "ain't",
|
||||
"arent": "aren't",
|
||||
"cant": "can't",
|
||||
"couldve": "could've",
|
||||
"couldnt": "couldn't",
|
||||
"couldn'tve": "couldn't've",
|
||||
"couldnt've": "couldn't've",
|
||||
"didnt": "didn't",
|
||||
"doesnt": "doesn't",
|
||||
"dont": "don't",
|
||||
"hadnt": "hadn't",
|
||||
"hadnt've": "hadn't've",
|
||||
"hadn'tve": "hadn't've",
|
||||
"hasnt": "hasn't",
|
||||
"havent": "haven't",
|
||||
"hed": "he'd",
|
||||
"hed've": "he'd've",
|
||||
"he'dve": "he'd've",
|
||||
"hes": "he's",
|
||||
"howd": "how'd",
|
||||
"howll": "how'll",
|
||||
"hows": "how's",
|
||||
"Id've": "I'd've",
|
||||
"I'dve": "I'd've",
|
||||
"Im": "I'm",
|
||||
"Ive": "I've",
|
||||
"isnt": "isn't",
|
||||
"itd": "it'd",
|
||||
"itd've": "it'd've",
|
||||
"it'dve": "it'd've",
|
||||
"itll": "it'll",
|
||||
"let's": "let's",
|
||||
"maam": "ma'am",
|
||||
"mightnt": "mightn't",
|
||||
"mightnt've": "mightn't've",
|
||||
"mightn'tve": "mightn't've",
|
||||
"mightve": "might've",
|
||||
"mustnt": "mustn't",
|
||||
"mustve": "must've",
|
||||
"neednt": "needn't",
|
||||
"notve": "not've",
|
||||
"oclock": "o'clock",
|
||||
"oughtnt": "oughtn't",
|
||||
"ow's'at": "'ow's'at",
|
||||
"'ows'at": "'ow's'at",
|
||||
"'ow'sat": "'ow's'at",
|
||||
"shant": "shan't",
|
||||
"shed've": "she'd've",
|
||||
"she'dve": "she'd've",
|
||||
"she's": "she's",
|
||||
"shouldve": "should've",
|
||||
"shouldnt": "shouldn't",
|
||||
"shouldnt've": "shouldn't've",
|
||||
"shouldn'tve": "shouldn't've",
|
||||
"somebody'd": "somebodyd",
|
||||
"somebodyd've": "somebody'd've",
|
||||
"somebody'dve": "somebody'd've",
|
||||
"somebodyll": "somebody'll",
|
||||
"somebodys": "somebody's",
|
||||
"someoned": "someone'd",
|
||||
"someoned've": "someone'd've",
|
||||
"someone'dve": "someone'd've",
|
||||
"someonell": "someone'll",
|
||||
"someones": "someone's",
|
||||
"somethingd": "something'd",
|
||||
"somethingd've": "something'd've",
|
||||
"something'dve": "something'd've",
|
||||
"somethingll": "something'll",
|
||||
"thats": "that's",
|
||||
"thered": "there'd",
|
||||
"thered've": "there'd've",
|
||||
"there'dve": "there'd've",
|
||||
"therere": "there're",
|
||||
"theres": "there's",
|
||||
"theyd": "they'd",
|
||||
"theyd've": "they'd've",
|
||||
"they'dve": "they'd've",
|
||||
"theyll": "they'll",
|
||||
"theyre": "they're",
|
||||
"theyve": "they've",
|
||||
"twas": "'twas",
|
||||
"wasnt": "wasn't",
|
||||
"wed've": "we'd've",
|
||||
"we'dve": "we'd've",
|
||||
"weve": "we've",
|
||||
"werent": "weren't",
|
||||
"whatll": "what'll",
|
||||
"whatre": "what're",
|
||||
"whats": "what's",
|
||||
"whatve": "what've",
|
||||
"whens": "when's",
|
||||
"whered": "where'd",
|
||||
"wheres": "where's",
|
||||
"whereve": "where've",
|
||||
"whod": "who'd",
|
||||
"whod've": "who'd've",
|
||||
"who'dve": "who'd've",
|
||||
"wholl": "who'll",
|
||||
"whos": "who's",
|
||||
"whove": "who've",
|
||||
"whyll": "why'll",
|
||||
"whyre": "why're",
|
||||
"whys": "why's",
|
||||
"wont": "won't",
|
||||
"wouldve": "would've",
|
||||
"wouldnt": "wouldn't",
|
||||
"wouldnt've": "wouldn't've",
|
||||
"wouldn'tve": "wouldn't've",
|
||||
"yall": "y'all",
|
||||
"yall'll": "y'all'll",
|
||||
"y'allll": "y'all'll",
|
||||
"yall'd've": "y'all'd've",
|
||||
"y'alld've": "y'all'd've",
|
||||
"y'all'dve": "y'all'd've",
|
||||
"youd": "you'd",
|
||||
"youd've": "you'd've",
|
||||
"you'dve": "you'd've",
|
||||
"youll": "you'll",
|
||||
"youre": "you're",
|
||||
"youve": "you've",
|
||||
"1st": "first",
|
||||
"2nd": "second",
|
||||
"3rd": "third",
|
||||
}
|
||||
NUMBERS = {
|
||||
"none": "0",
|
||||
"zero": "0",
|
||||
"one": "1",
|
||||
"two": "2",
|
||||
"three": "3",
|
||||
"four": "4",
|
||||
"five": "5",
|
||||
"six": "6",
|
||||
"seven": "7",
|
||||
"eight": "8",
|
||||
"nine": "9",
|
||||
"ten": "10",
|
||||
}
|
||||
ARTICLES = [
|
||||
"a",
|
||||
"an",
|
||||
"the",
|
||||
"to",
|
||||
"in",
|
||||
"from",
|
||||
"by",
|
||||
] # Contains a bit more than just articles, but we want to get rid of these elements influencing the accuracy
|
||||
PERIOD_STRIP = re.compile(r"(?!<=\d)(\.)(?!\d)")
|
||||
COMMA_STRIP = re.compile(r"(\d)(\,)(\d)")
|
||||
PUNCTUATION = [
|
||||
";",
|
||||
r"/",
|
||||
"[",
|
||||
"]",
|
||||
'"',
|
||||
"{",
|
||||
"}",
|
||||
"(",
|
||||
")",
|
||||
"=",
|
||||
"+",
|
||||
"\\",
|
||||
"_",
|
||||
"-",
|
||||
">",
|
||||
"<",
|
||||
"@",
|
||||
"`",
|
||||
",",
|
||||
"?",
|
||||
"!",
|
||||
]
|
||||
|
||||
|
||||
def normalize_answer(s: str) -> str:
|
||||
# process punctuation
|
||||
for p in PUNCTUATION:
|
||||
if (p + " " in s or " " + p in s) or (re.search(COMMA_STRIP, s) is not None):
|
||||
s = s.replace(p, "")
|
||||
else:
|
||||
s = s.replace(p, " ")
|
||||
s = PERIOD_STRIP.sub("", s, re.UNICODE)
|
||||
|
||||
# process digits and articles
|
||||
temp_text = s.lower().split()
|
||||
out_text = []
|
||||
for word in temp_text:
|
||||
word = NUMBERS.setdefault(word, word)
|
||||
if word not in ARTICLES:
|
||||
out_text.append(word)
|
||||
|
||||
# standardize contractions
|
||||
for word_id, word in enumerate(out_text):
|
||||
if word in CONTRACTIONS:
|
||||
out_text[word_id] = CONTRACTIONS[word]
|
||||
return " ".join(out_text)
|
||||
|
||||
|
||||
class DocVQAScoringFn(RegisteredBaseScoringFn):
|
||||
"""
|
||||
docvqa basically matches the generated answer against several allowed
|
||||
choices, but we need to normalize the answer to avoid penalizing
|
||||
trivial differences
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
self.supported_fn_defs_registry = {
|
||||
docvqa.identifier: docvqa,
|
||||
}
|
||||
|
||||
async def score_row(
|
||||
self,
|
||||
input_row: Dict[str, Any],
|
||||
scoring_fn_identifier: Optional[str] = "docvqa",
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> ScoringResultRow:
|
||||
expected_answers = json.loads(input_row["expected_answer"])
|
||||
generated_answer = input_row["generated_answer"]
|
||||
score = 1.0 if normalize_answer(generated_answer) in [normalize_answer(s) for s in expected_answers] else 0.0
|
||||
return {
|
||||
"score": score,
|
||||
}
|
|
@ -1,41 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
|
||||
|
||||
from .fn_defs.equality import equality
|
||||
|
||||
|
||||
class EqualityScoringFn(RegisteredBaseScoringFn):
|
||||
"""
|
||||
A scoring_fn that assigns a score of 1.0 if the input string matches the target string, and 0.0 otherwise.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
self.supported_fn_defs_registry = {
|
||||
equality.identifier: equality,
|
||||
}
|
||||
|
||||
async def score_row(
|
||||
self,
|
||||
input_row: Dict[str, Any],
|
||||
scoring_fn_identifier: Optional[str] = "equality",
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> ScoringResultRow:
|
||||
assert "expected_answer" in input_row, "Expected answer not found in input row."
|
||||
assert "generated_answer" in input_row, "Generated answer not found in input row."
|
||||
|
||||
expected_answer = input_row["expected_answer"]
|
||||
generated_answer = input_row["generated_answer"]
|
||||
score = 1.0 if expected_answer == generated_answer else 0.0
|
||||
return {
|
||||
"score": score,
|
||||
}
|
|
@ -1,5 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
|
@ -1,21 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
bfcl = ScoringFn(
|
||||
identifier="basic::bfcl",
|
||||
description="BFCL complex scoring",
|
||||
return_type=NumberType(),
|
||||
provider_id="basic",
|
||||
provider_resource_id="bfcl",
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.accuracy]),
|
||||
)
|
|
@ -1,21 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
docvqa = ScoringFn(
|
||||
identifier="basic::docvqa",
|
||||
description="DocVQA Visual Question & Answer scoring function",
|
||||
return_type=NumberType(),
|
||||
provider_id="basic",
|
||||
provider_resource_id="docvqa",
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.accuracy]),
|
||||
)
|
|
@ -1,21 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
equality = ScoringFn(
|
||||
identifier="basic::equality",
|
||||
description="Returns 1.0 if the input is equal to the target, 0.0 otherwise.",
|
||||
provider_id="basic",
|
||||
provider_resource_id="equality",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.accuracy]),
|
||||
)
|
|
@ -1,23 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
ifeval = ScoringFn(
|
||||
identifier="basic::ifeval",
|
||||
description="Eval intruction follow capacity by checkping how many instructions can be followed in each example",
|
||||
return_type=NumberType(),
|
||||
provider_id="basic",
|
||||
provider_resource_id="ifeval",
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.weighted_average],
|
||||
),
|
||||
)
|
|
@ -1,27 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
RegexParserScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
MATH_ANSWER_REGEXES = [r".*final answer is:?\s*\$\\boxed{(?P<X>.*)}\$"]
|
||||
|
||||
|
||||
regex_parser_math_response = ScoringFn(
|
||||
identifier="basic::regex_parser_math_response",
|
||||
description="For math related benchmarks, extract answer from the generated response and expected_answer and see if they match",
|
||||
return_type=NumberType(),
|
||||
provider_id="basic",
|
||||
provider_resource_id="regex-parser-math-response",
|
||||
params=RegexParserScoringFnParams(
|
||||
parsing_regexes=MATH_ANSWER_REGEXES,
|
||||
aggregation_functions=[AggregationFunctionType.accuracy],
|
||||
),
|
||||
)
|
|
@ -1,71 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
RegexParserScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
MULTILINGUAL_ANSWER_REGEXES = [
|
||||
r"The best answer is ",
|
||||
r"Answer\s*:",
|
||||
r"Answer\s*:", # Korean invisible character
|
||||
r"উত্তর\s*:",
|
||||
r"उत्तर\s*:",
|
||||
r"উত্তরঃ",
|
||||
r"উত্তর\s*:",
|
||||
r"Antwort\s*:",
|
||||
r"답변\s*:",
|
||||
r"정답\s*:",
|
||||
r"답\s*:",
|
||||
r"答案\s*:",
|
||||
r"答案\s*:",
|
||||
r"答\s*:",
|
||||
r"答\s*:",
|
||||
r"答复\s*:",
|
||||
r"答曰\s*:",
|
||||
r"الإجابة:",
|
||||
r"الجواب:",
|
||||
r"إجابة:",
|
||||
r"الإجابة النهائية:",
|
||||
r"الإجابة الصحيحة:",
|
||||
r"الإجابة الصحيحة هي:",
|
||||
r"الإجابة هي:",
|
||||
r"Respuesta\s*:",
|
||||
r"Risposta\s*:",
|
||||
r"答え\s*:",
|
||||
r"答え\s*:",
|
||||
r"回答\s*:",
|
||||
r"回答\s*:",
|
||||
r"解答\s*:",
|
||||
r"Jawaban\s*:",
|
||||
r"Réponse\s*:",
|
||||
r"Resposta\s*:",
|
||||
r"Jibu\s*:",
|
||||
r"Idahun\s*:",
|
||||
r"Ìdáhùn\s*:",
|
||||
r"Idáhùn\s*:",
|
||||
r"Àmọ̀nà\s*:",
|
||||
r"Àdáhùn\s*:",
|
||||
r"Ànúgọ\s*:",
|
||||
r"Àṣàyàn\s*:",
|
||||
]
|
||||
|
||||
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE = r"(?i){}\s*([A-D]|[أ-د]|[অ]|[ব]|[ড]|[ঢ]|[A]|[B]|[C]|[D])"
|
||||
|
||||
regex_parser_multiple_choice_answer = ScoringFn(
|
||||
identifier="basic::regex_parser_multiple_choice_answer",
|
||||
description="Extract answer from response matching Answer: [the_answer_letter], and compare with expected result",
|
||||
return_type=NumberType(),
|
||||
provider_id="basic",
|
||||
provider_resource_id="regex-parser-multiple-choice-answer",
|
||||
params=RegexParserScoringFnParams(
|
||||
parsing_regexes=[MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(x) for x in MULTILINGUAL_ANSWER_REGEXES],
|
||||
aggregation_functions=[AggregationFunctionType.accuracy],
|
||||
),
|
||||
)
|
|
@ -1,21 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
subset_of = ScoringFn(
|
||||
identifier="basic::subset_of",
|
||||
description="Returns 1.0 if the expected is included in generated, 0.0 otherwise.",
|
||||
return_type=NumberType(),
|
||||
provider_id="basic",
|
||||
provider_resource_id="subset-of",
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.accuracy]),
|
||||
)
|
|
@ -1,80 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
|
||||
|
||||
from .fn_defs.ifeval import (
|
||||
ifeval,
|
||||
)
|
||||
|
||||
|
||||
class IfEvalScoringFn(RegisteredBaseScoringFn):
|
||||
"""
|
||||
A scoring_fn Instruction-Following Eval (IFEval) benchmark
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
self.supported_fn_defs_registry = {
|
||||
ifeval.identifier: ifeval,
|
||||
}
|
||||
|
||||
async def score_row(
|
||||
self,
|
||||
input_row: Dict[str, Any],
|
||||
scoring_fn_identifier: Optional[str] = None,
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> ScoringResultRow:
|
||||
from ..utils.ifeval_utils import INSTRUCTION_DICT, INSTRUCTION_LIST
|
||||
|
||||
assert scoring_fn_identifier is not None, "Scoring function identifier not found."
|
||||
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
|
||||
if scoring_params is not None:
|
||||
fn_def.params = scoring_params
|
||||
|
||||
instruction_list = input_row["instruction_id_list"]
|
||||
generated_answer = input_row["generated_answer"].strip()
|
||||
|
||||
is_following_list = []
|
||||
results = dict(
|
||||
{k + "_correct": 0.0 for k in INSTRUCTION_LIST},
|
||||
**{k + "_total": 0.0 for k in INSTRUCTION_LIST},
|
||||
)
|
||||
|
||||
for index, instruction_id in enumerate(instruction_list):
|
||||
instruction_cls = INSTRUCTION_DICT[instruction_id]
|
||||
instruction = instruction_cls(instruction_id)
|
||||
results[instruction_id + "_total"] += 1.0
|
||||
results[instruction_id.split(":")[0] + "_total"] += 1.0
|
||||
|
||||
clean_input_row = {k: v for k, v in input_row["kwargs"][index].items() if v is not None}
|
||||
print(clean_input_row)
|
||||
instruction.build_description(**clean_input_row)
|
||||
args = instruction.get_instruction_args()
|
||||
if args and "prompt" in args:
|
||||
instruction.build_description(prompt=input_row["prompt"])
|
||||
|
||||
if generated_answer and instruction.check_following(generated_answer):
|
||||
is_following_list.append(True)
|
||||
results[instruction_id + "_correct"] += 1.0
|
||||
results[instruction_id.split(":")[0] + "_correct"] += 1.0
|
||||
else:
|
||||
is_following_list.append(False)
|
||||
|
||||
if len(is_following_list) == 0:
|
||||
return {
|
||||
"score": 0.0,
|
||||
"weight": 0.0,
|
||||
}
|
||||
|
||||
return {
|
||||
"score": float(sum(is_following_list)) / float(len(is_following_list)),
|
||||
"weight": float(len(is_following_list)),
|
||||
}
|
|
@ -1,66 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams, ScoringFnParamsType
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
|
||||
|
||||
from ..utils.math_utils import first_answer, normalize_final_answer, try_evaluate_frac, try_evaluate_latex
|
||||
from .fn_defs.regex_parser_math_response import (
|
||||
regex_parser_math_response,
|
||||
)
|
||||
|
||||
|
||||
class RegexParserMathResponseScoringFn(RegisteredBaseScoringFn):
|
||||
"""
|
||||
A scoring_fn for math benchamrks that parses answer from generated response according to context and check match with expected_answer.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
self.supported_fn_defs_registry = {
|
||||
regex_parser_math_response.identifier: regex_parser_math_response,
|
||||
}
|
||||
|
||||
async def score_row(
|
||||
self,
|
||||
input_row: Dict[str, Any],
|
||||
scoring_fn_identifier: Optional[str] = None,
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> ScoringResultRow:
|
||||
assert scoring_fn_identifier is not None, "Scoring function identifier not found."
|
||||
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
|
||||
if scoring_params is not None:
|
||||
fn_def.params = scoring_params
|
||||
|
||||
assert fn_def.params is not None and fn_def.params.type == ScoringFnParamsType.regex_parser.value, (
|
||||
f"RegexParserScoringFnParams not found for {fn_def}."
|
||||
)
|
||||
|
||||
expected_answer = input_row["expected_answer"]
|
||||
generated_answer = input_row["generated_answer"]
|
||||
|
||||
parsing_regexes = fn_def.params.parsing_regexes
|
||||
assert len(parsing_regexes) == 1, (
|
||||
"Only one parsing regex is supported for regex_parser_math_response scoring function."
|
||||
)
|
||||
parsing_regexes = fn_def.params.parsing_regexes[0]
|
||||
|
||||
normalized_generated_answer = normalize_final_answer(
|
||||
first_answer(generated_answer),
|
||||
parsing_regexes,
|
||||
match_first=True,
|
||||
)
|
||||
normalized_generated_answer = try_evaluate_frac(try_evaluate_latex(normalized_generated_answer))
|
||||
|
||||
normalized_expected_answer = normalize_final_answer(expected_answer, r".*")
|
||||
normalized_expected_answer = try_evaluate_frac(try_evaluate_latex(normalized_expected_answer))
|
||||
|
||||
score = 1.0 if normalized_generated_answer == normalized_expected_answer else 0.0
|
||||
return {
|
||||
"score": score,
|
||||
}
|
|
@ -1,58 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import re
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams, ScoringFnParamsType
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
|
||||
|
||||
from .fn_defs.regex_parser_multiple_choice_answer import (
|
||||
regex_parser_multiple_choice_answer,
|
||||
)
|
||||
|
||||
|
||||
class RegexParserScoringFn(RegisteredBaseScoringFn):
|
||||
"""
|
||||
A scoring_fn that parses answer from generated response according to context and check match with expected_answer.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
self.supported_fn_defs_registry = {
|
||||
regex_parser_multiple_choice_answer.identifier: regex_parser_multiple_choice_answer,
|
||||
}
|
||||
|
||||
async def score_row(
|
||||
self,
|
||||
input_row: Dict[str, Any],
|
||||
scoring_fn_identifier: Optional[str] = None,
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> ScoringResultRow:
|
||||
assert scoring_fn_identifier is not None, "Scoring function identifier not found."
|
||||
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
|
||||
if scoring_params is not None:
|
||||
fn_def.params = scoring_params
|
||||
|
||||
assert fn_def.params is not None and fn_def.params.type == ScoringFnParamsType.regex_parser.value, (
|
||||
f"RegexParserScoringFnParams not found for {fn_def}."
|
||||
)
|
||||
|
||||
expected_answer = input_row["expected_answer"]
|
||||
generated_answer = input_row["generated_answer"]
|
||||
|
||||
# parse answer according to regex
|
||||
parsed_answer = None
|
||||
for regex in fn_def.params.parsing_regexes:
|
||||
match = re.search(regex, generated_answer)
|
||||
if match:
|
||||
parsed_answer = match.group(1)
|
||||
break
|
||||
|
||||
score = 1.0 if parsed_answer and parsed_answer == expected_answer else 0.0
|
||||
return {
|
||||
"score": score,
|
||||
}
|
|
@ -1,38 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
|
||||
|
||||
from .fn_defs.subset_of import subset_of
|
||||
|
||||
|
||||
class SubsetOfScoringFn(RegisteredBaseScoringFn):
|
||||
"""
|
||||
A scoring_fn that assigns a score of 1.0 if the expected string is included in the generated string, and 0.0 otherwise.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
self.supported_fn_defs_registry = {
|
||||
subset_of.identifier: subset_of,
|
||||
}
|
||||
|
||||
async def score_row(
|
||||
self,
|
||||
input_row: Dict[str, Any],
|
||||
scoring_fn_identifier: Optional[str] = "subset_of",
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> ScoringResultRow:
|
||||
expected_answer = input_row["expected_answer"]
|
||||
generated_answer = input_row["generated_answer"]
|
||||
score = 1.0 if expected_answer in generated_answer else 0.0
|
||||
return {
|
||||
"score": score,
|
||||
}
|
|
@ -1,5 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
|
@ -1,296 +0,0 @@
|
|||
# ruff: noqa
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import ast
|
||||
|
||||
from .tree_sitter import get_parser
|
||||
|
||||
|
||||
def parse_java_function_call(source_code):
|
||||
if not source_code.endswith(";"):
|
||||
source_code += ";" # Necessary for the parser not to register an error
|
||||
parser = get_parser("java")
|
||||
tree = parser.parse(bytes(source_code, "utf8"))
|
||||
root_node = tree.root_node
|
||||
|
||||
if root_node.has_error:
|
||||
raise Exception("Error parsing java the source code.")
|
||||
|
||||
def get_text(node):
|
||||
"""Returns the text represented by the node."""
|
||||
return source_code[node.start_byte : node.end_byte]
|
||||
|
||||
def traverse_node(node, nested=False):
|
||||
if node.type == "string_literal":
|
||||
if nested:
|
||||
return get_text(node)
|
||||
# Strip surrounding quotes from string literals
|
||||
return get_text(node)[1:-1]
|
||||
elif node.type == "character_literal":
|
||||
if nested:
|
||||
return get_text(node)
|
||||
# Strip surrounding single quotes from character literals
|
||||
return get_text(node)[1:-1]
|
||||
"""Traverse the node to collect texts for complex structures."""
|
||||
if node.type in [
|
||||
"identifier",
|
||||
"class_literal",
|
||||
"type_identifier",
|
||||
"method_invocation",
|
||||
]:
|
||||
return get_text(node)
|
||||
elif node.type == "array_creation_expression":
|
||||
# Handle array creation expression specifically
|
||||
type_node = node.child_by_field_name("type")
|
||||
value_node = node.child_by_field_name("value")
|
||||
type_text = traverse_node(type_node, True)
|
||||
value_text = traverse_node(value_node, True)
|
||||
return f"new {type_text}[]{value_text}"
|
||||
elif node.type == "object_creation_expression":
|
||||
# Handle object creation expression specifically
|
||||
type_node = node.child_by_field_name("type")
|
||||
arguments_node = node.child_by_field_name("arguments")
|
||||
type_text = traverse_node(type_node, True)
|
||||
if arguments_node:
|
||||
# Process each argument carefully, avoiding unnecessary punctuation
|
||||
argument_texts = []
|
||||
for child in arguments_node.children:
|
||||
if child.type not in [
|
||||
",",
|
||||
"(",
|
||||
")",
|
||||
]: # Exclude commas and parentheses
|
||||
argument_text = traverse_node(child, True)
|
||||
argument_texts.append(argument_text)
|
||||
arguments_text = ", ".join(argument_texts)
|
||||
return f"new {type_text}({arguments_text})"
|
||||
else:
|
||||
return f"new {type_text}()"
|
||||
elif node.type == "set":
|
||||
# Handling sets specifically
|
||||
items = [traverse_node(n, True) for n in node.children if n.type not in [",", "set"]]
|
||||
return "{" + ", ".join(items) + "}"
|
||||
|
||||
elif node.child_count > 0:
|
||||
return "".join(traverse_node(child, True) for child in node.children)
|
||||
else:
|
||||
return get_text(node)
|
||||
|
||||
def extract_arguments(args_node):
|
||||
arguments = {}
|
||||
for child in args_node.children:
|
||||
if child.type == "assignment_expression":
|
||||
# For named parameters
|
||||
name_node, value_node = child.children[0], child.children[2]
|
||||
name = get_text(name_node)
|
||||
value = traverse_node(value_node)
|
||||
if name in arguments:
|
||||
if not isinstance(arguments[name], list):
|
||||
arguments[name] = [arguments[name]]
|
||||
arguments[name].append(value)
|
||||
else:
|
||||
arguments[name] = value
|
||||
# arguments.append({'name': name, 'value': value})
|
||||
elif child.type in ["identifier", "class_literal", "set"]:
|
||||
# For unnamed parameters and handling sets
|
||||
value = traverse_node(child)
|
||||
if None in arguments:
|
||||
if not isinstance(arguments[None], list):
|
||||
arguments[None] = [arguments[None]]
|
||||
arguments[None].append(value)
|
||||
else:
|
||||
arguments[None] = value
|
||||
return arguments
|
||||
|
||||
def traverse(node):
|
||||
if node.type == "method_invocation":
|
||||
# Extract the function name and its arguments
|
||||
method_name = get_text(node.child_by_field_name("name"))
|
||||
class_name_node = node.child_by_field_name("object")
|
||||
if class_name_node:
|
||||
class_name = get_text(class_name_node)
|
||||
function_name = f"{class_name}.{method_name}"
|
||||
else:
|
||||
function_name = method_name
|
||||
arguments_node = node.child_by_field_name("arguments")
|
||||
if arguments_node:
|
||||
arguments = extract_arguments(arguments_node)
|
||||
for key, value in arguments.items():
|
||||
if isinstance(value, list):
|
||||
raise Exception("Error: Multiple arguments with the same name are not supported.")
|
||||
return [{function_name: arguments}]
|
||||
|
||||
else:
|
||||
for child in node.children:
|
||||
result = traverse(child)
|
||||
if result:
|
||||
return result
|
||||
|
||||
result = traverse(root_node)
|
||||
return result if result else {}
|
||||
|
||||
|
||||
def parse_javascript_function_call(source_code):
|
||||
if not source_code.endswith(";"):
|
||||
source_code += ";" # Necessary for the parser not to register an error
|
||||
parser = get_parser("javascript")
|
||||
# Parse the source code
|
||||
tree = parser.parse(bytes(source_code, "utf8"))
|
||||
root_node = tree.root_node
|
||||
if root_node.has_error:
|
||||
raise Exception("Error js parsing the source code.")
|
||||
|
||||
# Function to recursively extract argument details
|
||||
def extract_arguments(node):
|
||||
args = {}
|
||||
for child in node.children:
|
||||
if child.type == "assignment_expression":
|
||||
# Extract left (name) and right (value) parts of the assignment
|
||||
name = child.children[0].text.decode("utf-8")
|
||||
value = child.children[2].text.decode("utf-8")
|
||||
if (value.startswith('"') and value.endswith('"')) or (value.startswith("'") and value.endswith("'")):
|
||||
value = value[1:-1] # Trim the quotation marks
|
||||
if name in args:
|
||||
if not isinstance(args[name], list):
|
||||
args[name] = [args[name]]
|
||||
args[name].append(value)
|
||||
else:
|
||||
args[name] = value
|
||||
|
||||
elif child.type == "identifier" or child.type == "true":
|
||||
# Handle non-named arguments and boolean values
|
||||
value = child.text.decode("utf-8")
|
||||
if None in args:
|
||||
if not isinstance(args[None], list):
|
||||
args[None] = [args[None]]
|
||||
args[None].append(value)
|
||||
else:
|
||||
args[None] = value
|
||||
return args
|
||||
|
||||
# Find the function call and extract its name and arguments
|
||||
if root_node.type == "program":
|
||||
for child in root_node.children:
|
||||
if child.type == "expression_statement":
|
||||
for sub_child in child.children:
|
||||
if sub_child.type == "call_expression":
|
||||
function_name = sub_child.children[0].text.decode("utf8")
|
||||
arguments_node = sub_child.children[1]
|
||||
parameters = extract_arguments(arguments_node)
|
||||
for key, value in parameters.items():
|
||||
if isinstance(value, list):
|
||||
raise Exception("Error: Multiple arguments with the same name are not supported.")
|
||||
result = [{function_name: parameters}]
|
||||
return result
|
||||
|
||||
|
||||
def ast_parse(input_str, language="Python"):
|
||||
if language == "Python":
|
||||
cleaned_input = input_str.strip("[]'")
|
||||
parsed = ast.parse(cleaned_input, mode="eval")
|
||||
extracted = []
|
||||
if isinstance(parsed.body, ast.Call):
|
||||
extracted.append(resolve_ast_call(parsed.body))
|
||||
else:
|
||||
for elem in parsed.body.elts:
|
||||
extracted.append(resolve_ast_call(elem))
|
||||
return extracted
|
||||
elif language == "Java":
|
||||
return parse_java_function_call(input_str[1:-1]) # Remove the [ and ] from the string
|
||||
elif language == "JavaScript":
|
||||
return parse_javascript_function_call(input_str[1:-1])
|
||||
else:
|
||||
raise NotImplementedError(f"Unsupported language: {language}")
|
||||
|
||||
|
||||
def resolve_ast_call(elem):
|
||||
# Handle nested attributes for deeply nested module paths
|
||||
func_parts = []
|
||||
func_part = elem.func
|
||||
while isinstance(func_part, ast.Attribute):
|
||||
func_parts.append(func_part.attr)
|
||||
func_part = func_part.value
|
||||
if isinstance(func_part, ast.Name):
|
||||
func_parts.append(func_part.id)
|
||||
func_name = ".".join(reversed(func_parts))
|
||||
args_dict = {}
|
||||
# Parse when args are simply passed as an unnamed dictionary arg
|
||||
for arg in elem.args:
|
||||
if isinstance(arg, ast.Dict):
|
||||
for key, value in zip(arg.keys, arg.values):
|
||||
if isinstance(key, ast.Constant):
|
||||
arg_name = key.value
|
||||
output = resolve_ast_by_type(value)
|
||||
args_dict[arg_name] = output
|
||||
for arg in elem.keywords:
|
||||
output = resolve_ast_by_type(arg.value)
|
||||
args_dict[arg.arg] = output
|
||||
return {func_name: args_dict}
|
||||
|
||||
|
||||
def resolve_ast_by_type(value):
|
||||
if isinstance(value, ast.Constant):
|
||||
if value.value is Ellipsis:
|
||||
output = "..."
|
||||
else:
|
||||
output = value.value
|
||||
elif isinstance(value, ast.UnaryOp):
|
||||
output = -value.operand.value
|
||||
elif isinstance(value, ast.List):
|
||||
output = [resolve_ast_by_type(v) for v in value.elts]
|
||||
elif isinstance(value, ast.Dict):
|
||||
output = {resolve_ast_by_type(k): resolve_ast_by_type(v) for k, v in zip(value.keys, value.values)}
|
||||
elif isinstance(value, ast.NameConstant): # Added this condition to handle boolean values
|
||||
output = value.value
|
||||
elif isinstance(value, ast.BinOp): # Added this condition to handle function calls as arguments
|
||||
output = eval(ast.unparse(value))
|
||||
elif isinstance(value, ast.Name):
|
||||
output = value.id
|
||||
elif isinstance(value, ast.Call):
|
||||
if len(value.keywords) == 0:
|
||||
output = ast.unparse(value)
|
||||
else:
|
||||
output = resolve_ast_call(value)
|
||||
elif isinstance(value, ast.Tuple):
|
||||
output = tuple(resolve_ast_by_type(v) for v in value.elts)
|
||||
elif isinstance(value, ast.Lambda):
|
||||
output = eval(ast.unparse(value.body[0].value))
|
||||
elif isinstance(value, ast.Ellipsis):
|
||||
output = "..."
|
||||
elif isinstance(value, ast.Subscript):
|
||||
try:
|
||||
output = ast.unparse(value.body[0].value)
|
||||
except:
|
||||
output = ast.unparse(value.value) + "[" + ast.unparse(value.slice) + "]"
|
||||
else:
|
||||
raise Exception(f"Unsupported AST type: {type(value)}")
|
||||
return output
|
||||
|
||||
|
||||
def decode_ast(result, language="Python"):
|
||||
func = result
|
||||
func = func.replace("\n", "") # remove new line characters
|
||||
if not func.startswith("["):
|
||||
func = "[" + func
|
||||
if not func.endswith("]"):
|
||||
func = func + "]"
|
||||
decoded_output = ast_parse(func, language)
|
||||
return decoded_output
|
||||
|
||||
|
||||
def decode_execute(result):
|
||||
func = result
|
||||
func = func.replace("\n", "") # remove new line characters
|
||||
if not func.startswith("["):
|
||||
func = "[" + func
|
||||
if not func.endswith("]"):
|
||||
func = func + "]"
|
||||
decode_output = ast_parse(func)
|
||||
execution_list = []
|
||||
for function_call in decode_output:
|
||||
for key, value in function_call.items():
|
||||
execution_list.append(f"{key}({','.join([f'{k}={repr(v)}' for k, v in value.items()])})")
|
||||
return execution_list
|
|
@ -1,989 +0,0 @@
|
|||
# ruff: noqa
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import json
|
||||
import re
|
||||
import time
|
||||
from typing import Any
|
||||
|
||||
# Comment out for now until we actually use the rest checker in evals
|
||||
# import requests # Do not remove this import even though it seems to be unused. It's used in the executable_checker_rest function.
|
||||
|
||||
|
||||
class NoAPIKeyError(Exception):
|
||||
def __init__(self):
|
||||
self.message = "❗️Please fill in the API keys in the function_credential_config.json file. If you do not provide the API keys, the executable test category results will be inaccurate."
|
||||
super().__init__(self.message)
|
||||
|
||||
|
||||
REAL_TIME_MATCH_ALLOWED_DIFFERENCE = 0.2
|
||||
|
||||
|
||||
JAVA_TYPE_CONVERSION = {
|
||||
"byte": int,
|
||||
"short": int,
|
||||
"integer": int,
|
||||
"float": float,
|
||||
"double": float,
|
||||
"long": int,
|
||||
"boolean": bool,
|
||||
"char": str,
|
||||
"Array": list,
|
||||
"ArrayList": list,
|
||||
"Set": set,
|
||||
"HashMap": dict,
|
||||
"Hashtable": dict,
|
||||
"Queue": list, # this can be `queue.Queue` as well, for simplicity we check with list
|
||||
"Stack": list,
|
||||
"String": str,
|
||||
"any": str,
|
||||
}
|
||||
|
||||
JS_TYPE_CONVERSION = {
|
||||
"String": str,
|
||||
"integer": int,
|
||||
"float": float,
|
||||
"Bigint": int,
|
||||
"Boolean": bool,
|
||||
"dict": dict,
|
||||
"array": list,
|
||||
"any": str,
|
||||
}
|
||||
|
||||
# We switch to conditional import for the following two imports to avoid unnecessary installations.
|
||||
# User doesn't need to setup the tree-sitter packages if they are not running the test for that language.
|
||||
# from js_type_converter import js_type_converter
|
||||
# from java_type_converter import java_type_converter
|
||||
|
||||
PYTHON_TYPE_MAPPING = {
|
||||
"string": str,
|
||||
"integer": int,
|
||||
"float": float,
|
||||
"boolean": bool,
|
||||
"array": list,
|
||||
"tuple": list,
|
||||
"dict": dict,
|
||||
"any": str,
|
||||
}
|
||||
|
||||
# This is the list of types that we need to recursively check its values
|
||||
PYTHON_NESTED_TYPE_CHECK_LIST = ["array", "tuple"]
|
||||
|
||||
|
||||
NESTED_CONVERSION_TYPE_LIST = ["Array", "ArrayList", "array"]
|
||||
|
||||
|
||||
#### Helper functions for AST ####
|
||||
def find_description(func_descriptions, name):
|
||||
if type(func_descriptions) == list:
|
||||
for func_description in func_descriptions:
|
||||
if func_description["name"] == name:
|
||||
return func_description
|
||||
return None
|
||||
else:
|
||||
# it is a dict, there is only one function
|
||||
return func_descriptions
|
||||
|
||||
|
||||
def get_possible_answer_type(possible_answer: list):
|
||||
for answer in possible_answer:
|
||||
if answer != "": # Optional parameter
|
||||
return type(answer)
|
||||
return None
|
||||
|
||||
|
||||
def type_checker(
|
||||
param: str,
|
||||
value,
|
||||
possible_answer: list,
|
||||
expected_type_description: str,
|
||||
expected_type_converted,
|
||||
nested_type_converted,
|
||||
):
|
||||
# NOTE: This type checker only supports nested type checking for one level deep.
|
||||
# We didn't implement recursive type checking for nested types, as it's not needed for the current use case and it's very complex.
|
||||
|
||||
result: Any = {
|
||||
"valid": True,
|
||||
"error": [],
|
||||
"is_variable": False,
|
||||
"error_type": "type_error:simple",
|
||||
}
|
||||
|
||||
is_variable = False
|
||||
# check for the case where a variable is used instead of a actual value.
|
||||
# use the type in possible_answer as the expected type
|
||||
possible_answer_type = get_possible_answer_type(possible_answer)
|
||||
# if possible_answer only contains optional parameters, we can't determine the type
|
||||
if possible_answer_type != None:
|
||||
# we are being precise here.
|
||||
# in fact, possible_answer_type should always be string, as that's how we treat varibale in possible_answer
|
||||
if possible_answer_type != expected_type_converted:
|
||||
is_variable = True
|
||||
|
||||
# value is the same type as in function description
|
||||
if type(value) == expected_type_converted:
|
||||
# We don't need to do recursive check for simple types
|
||||
if nested_type_converted == None:
|
||||
result["is_variable"] = is_variable
|
||||
return result
|
||||
else:
|
||||
for possible_answer_item in possible_answer:
|
||||
flag = True # Each parameter should match to at least one possible answer type.
|
||||
# Here, we assume that each item should be the same type. We could also relax it.
|
||||
if type(possible_answer_item) == list:
|
||||
for value_item in value:
|
||||
checker_result = type_checker(
|
||||
param,
|
||||
value_item,
|
||||
possible_answer_item,
|
||||
str(nested_type_converted),
|
||||
nested_type_converted,
|
||||
None,
|
||||
)
|
||||
if not checker_result["valid"]:
|
||||
flag = False
|
||||
break
|
||||
|
||||
if flag:
|
||||
return {"valid": True, "error": [], "is_variable": is_variable}
|
||||
|
||||
result["valid"] = False
|
||||
result["error"] = [
|
||||
f"Nested type checking failed for parameter {repr(param)}. Expected outer type {expected_type_description} with inner type {str(nested_type_converted)}. Parameter value: {repr(value)}."
|
||||
]
|
||||
result["error_type"] = "type_error:nested"
|
||||
|
||||
# value is not as expected, check for the case where a variable is used instead of a actual value
|
||||
# use the type in possible_answer as the expected type
|
||||
possible_answer_type = get_possible_answer_type(possible_answer)
|
||||
# if possible_answer only contains optional parameters, we can't determine the type
|
||||
if possible_answer_type != None:
|
||||
# we are being precise here.
|
||||
# in fact, possible_answer_type should always be string, as that's how we treat varibale in possible_answer
|
||||
if type(value) == possible_answer_type:
|
||||
result["is_variable"] = True
|
||||
return result
|
||||
|
||||
result["valid"] = False
|
||||
result["error"].append(
|
||||
f"Incorrect type for parameter {repr(param)}. Expected type {expected_type_description}, got {type(value).__name__}. Parameter value: {repr(value)}."
|
||||
)
|
||||
result["error_type"] = "type_error:simple"
|
||||
return result
|
||||
|
||||
|
||||
def standardize_string(input_string: str):
|
||||
# This function standardizes the string by removing all the spaces, ",./-_*^" punctuation, and converting it to lowercase
|
||||
# It will also convert all the single quotes to double quotes
|
||||
# This is used to compare the model output with the possible answers
|
||||
# We don't want to punish model for answer like April 1, 2024 vs April 1,2024, vs April 1 2024
|
||||
regex_string = r"[ \,\.\/\-\_\*\^]"
|
||||
return re.sub(regex_string, "", input_string).lower().replace("'", '"')
|
||||
|
||||
|
||||
def string_checker(param: str, model_output: str, possible_answer: list):
|
||||
standardize_possible_answer = []
|
||||
standardize_model_output = standardize_string(model_output)
|
||||
for i in range(len(possible_answer)):
|
||||
if type(possible_answer[i]) == str:
|
||||
standardize_possible_answer.append(standardize_string(possible_answer[i]))
|
||||
|
||||
if standardize_model_output not in standardize_possible_answer:
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [
|
||||
f"Invalid value for parameter {repr(param)}: {repr(model_output)}. Expected one of {possible_answer}. Case insensitive."
|
||||
],
|
||||
"error_type": "value_error:string",
|
||||
}
|
||||
|
||||
return {"valid": True, "error": []}
|
||||
|
||||
|
||||
def list_checker(param: str, model_output: list, possible_answer: list):
|
||||
# Convert the tuple to a list
|
||||
|
||||
standardize_model_output = list(model_output)
|
||||
|
||||
# If the element in the list is a string, we need to standardize it
|
||||
for i in range(len(standardize_model_output)):
|
||||
if type(standardize_model_output[i]) == str:
|
||||
standardize_model_output[i] = standardize_string(model_output[i])
|
||||
|
||||
standardize_possible_answer: Any = []
|
||||
# We also need to standardize the possible answers
|
||||
for i in range(len(possible_answer)):
|
||||
standardize_possible_answer.append([])
|
||||
for j in range(len(possible_answer[i])):
|
||||
if type(possible_answer[i][j]) == str:
|
||||
standardize_possible_answer[i].append(standardize_string(possible_answer[i][j]))
|
||||
else:
|
||||
standardize_possible_answer[i].append(possible_answer[i][j])
|
||||
|
||||
if standardize_model_output not in standardize_possible_answer:
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [
|
||||
f"Invalid value for parameter {repr(param)}: {repr(model_output)}. Expected one of {possible_answer}."
|
||||
],
|
||||
"error_type": "value_error:list/tuple",
|
||||
}
|
||||
|
||||
return {"valid": True, "error": []}
|
||||
|
||||
|
||||
def dict_checker(param: str, model_output: dict, possible_answers: list):
|
||||
# This function works for simple dictionaries, but not dictionaries with nested dictionaries.
|
||||
# The current dataset only contains simple dictionaries, so this is sufficient.
|
||||
|
||||
result = {"valid": False, "error": [], "error_type": "dict_checker:unclear"}
|
||||
for i in range(len(possible_answers)):
|
||||
if possible_answers[i] == "":
|
||||
continue
|
||||
|
||||
result = {"valid": False, "error": [], "error_type": "dict_checker:unclear"}
|
||||
|
||||
flag = True
|
||||
|
||||
possible_answer = possible_answers[i]
|
||||
# possible_anwer is a single dictionary
|
||||
|
||||
for key, value in model_output.items():
|
||||
if key not in possible_answer:
|
||||
result["valid"] = False
|
||||
result["error"].append(f"Unexpected dict key parameter: '{key}'.") # type: ignore[attr-defined]
|
||||
result["error_type"] = "value_error:dict_key"
|
||||
flag = False
|
||||
break
|
||||
|
||||
standardize_value = value
|
||||
# If the value is a string, we need to standardize it
|
||||
if type(value) == str:
|
||||
standardize_value = standardize_string(value)
|
||||
|
||||
# We also need to standardize the possible answers if they are string
|
||||
standardize_possible_answer = []
|
||||
for i in range(len(possible_answer[key])):
|
||||
if type(possible_answer[key][i]) == str:
|
||||
standardize_possible_answer.append(standardize_string(possible_answer[key][i]))
|
||||
else:
|
||||
standardize_possible_answer.append(possible_answer[key][i])
|
||||
|
||||
if standardize_value not in standardize_possible_answer:
|
||||
result["valid"] = False
|
||||
result["error"].append( # type: ignore[attr-defined]
|
||||
f"Invalid value for parameter {repr(key)}: {repr(value)}. Expected one of {standardize_possible_answer}."
|
||||
)
|
||||
result["error_type"] = "value_error:dict_value"
|
||||
flag = False
|
||||
break
|
||||
|
||||
for key, value in possible_answer.items():
|
||||
if key not in model_output and "" not in value:
|
||||
result["valid"] = False
|
||||
result["error"].append(f"Missing dict key parameter: '{key}'.") # type: ignore[attr-defined]
|
||||
result["error_type"] = "value_error:dict_key"
|
||||
flag = False
|
||||
break
|
||||
|
||||
if flag:
|
||||
return {"valid": True, "error": []}
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def list_dict_checker(param: str, model_output: list, possible_answers: list):
|
||||
# This function takes in a list of dictionaries and checks if each dictionary is valid
|
||||
# The order of the dictionaries in the list must match the order of the possible answers
|
||||
|
||||
result = {"valid": False, "error": [], "error_type": "list_dict_checker:unclear"}
|
||||
|
||||
for answer_index in range(len(possible_answers)):
|
||||
flag = True # True means so far, all dictionaries are valid
|
||||
|
||||
# Only proceed if the number of dictionaries in the list matches the number of dictionaries in the possible answers
|
||||
if len(model_output) != len(possible_answers[answer_index]):
|
||||
result["valid"] = False
|
||||
result["error"] = ["Wrong number of dictionaries in the list."]
|
||||
result["error_type"] = "value_error:list_dict_count"
|
||||
flag = False
|
||||
continue
|
||||
|
||||
for dict_index in range(len(model_output)):
|
||||
result = dict_checker(
|
||||
param,
|
||||
model_output[dict_index],
|
||||
[possible_answers[answer_index][dict_index]],
|
||||
)
|
||||
if not result["valid"]:
|
||||
flag = False
|
||||
break
|
||||
if flag:
|
||||
return {"valid": True, "error": []}
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def simple_function_checker(
|
||||
func_description: dict,
|
||||
model_output: dict,
|
||||
possible_answer: dict,
|
||||
language: str,
|
||||
model_name: str,
|
||||
):
|
||||
possible_answer = list(possible_answer.values())[0]
|
||||
# Extract function name and parameters details
|
||||
func_name = func_description["name"]
|
||||
param_details = func_description["parameters"]["properties"]
|
||||
required_params = func_description["parameters"]["required"]
|
||||
|
||||
# Initialize a result dictionary
|
||||
result = {
|
||||
"valid": True,
|
||||
"error": [],
|
||||
"error_type": "simple_function_checker:unclear",
|
||||
}
|
||||
|
||||
# Check if function name matches
|
||||
if func_name not in model_output:
|
||||
result["valid"] = False
|
||||
result["error"].append( # type: ignore[attr-defined]
|
||||
f"Function name {repr(func_name)} not found in model output."
|
||||
)
|
||||
result["error_type"] = "simple_function_checker:wrong_func_name"
|
||||
return result
|
||||
|
||||
model_params = model_output[func_name]
|
||||
|
||||
# Check for required parameters in model output
|
||||
for param in required_params:
|
||||
if param not in model_params:
|
||||
result["valid"] = False
|
||||
result["error"].append(f"Missing required parameter: {repr(param)}.") # type: ignore[attr-defined]
|
||||
result["error_type"] = "simple_function_checker:missing_required"
|
||||
return result
|
||||
|
||||
# Validate types and values for each parameter in model output
|
||||
for param, value in model_params.items():
|
||||
if param not in param_details or param not in possible_answer:
|
||||
result["valid"] = False
|
||||
result["error"].append(f"Unexpected parameter: {repr(param)}.") # type: ignore[attr-defined]
|
||||
result["error_type"] = "simple_function_checker:unexpected_param"
|
||||
return result
|
||||
|
||||
full_param_details = param_details[param]
|
||||
expected_type_description = full_param_details["type"] # This is a string
|
||||
is_variable = False
|
||||
nested_type_converted = None
|
||||
|
||||
if language == "Java":
|
||||
from evals.utils.bfcl.java_type_converter import java_type_converter
|
||||
|
||||
expected_type_converted = JAVA_TYPE_CONVERSION[expected_type_description]
|
||||
|
||||
if expected_type_description in JAVA_TYPE_CONVERSION:
|
||||
if type(value) != str:
|
||||
result["valid"] = False
|
||||
result["error"].append( # type: ignore[attr-defined]
|
||||
f"Incorrect type for parameter {repr(param)}. Expected type String, got {type(value).__name__}. Parameter value: {repr(value)}."
|
||||
)
|
||||
result["error_type"] = "type_error:java"
|
||||
return result
|
||||
|
||||
if expected_type_description in NESTED_CONVERSION_TYPE_LIST:
|
||||
nested_type = param_details[param]["items"]["type"]
|
||||
nested_type_converted = JAVA_TYPE_CONVERSION[nested_type]
|
||||
value = java_type_converter(value, expected_type_description, nested_type)
|
||||
else:
|
||||
value = java_type_converter(value, expected_type_description)
|
||||
|
||||
elif language == "JavaScript":
|
||||
from evals.utils.bfcl.js_type_converter import js_type_converter
|
||||
|
||||
expected_type_converted = JS_TYPE_CONVERSION[expected_type_description]
|
||||
|
||||
if expected_type_description in JS_TYPE_CONVERSION:
|
||||
if type(value) != str:
|
||||
result["valid"] = False
|
||||
result["error"].append( # type: ignore[attr-defined]
|
||||
f"Incorrect type for parameter {repr(param)}. Expected type String, got {type(value).__name__}. Parameter value: {repr(value)}."
|
||||
)
|
||||
result["error_type"] = "type_error:js"
|
||||
return result
|
||||
|
||||
if expected_type_description in NESTED_CONVERSION_TYPE_LIST:
|
||||
nested_type = param_details[param]["items"]["type"]
|
||||
nested_type_converted = JS_TYPE_CONVERSION[nested_type]
|
||||
value = js_type_converter(value, expected_type_description, nested_type)
|
||||
else:
|
||||
value = js_type_converter(value, expected_type_description)
|
||||
|
||||
elif language == "Python":
|
||||
expected_type_converted = PYTHON_TYPE_MAPPING[expected_type_description]
|
||||
if expected_type_description in PYTHON_NESTED_TYPE_CHECK_LIST:
|
||||
nested_type = param_details[param]["items"]["type"]
|
||||
nested_type_converted = PYTHON_TYPE_MAPPING[nested_type]
|
||||
|
||||
# We convert all tuple value to list when the expected type is tuple.
|
||||
# The conversion is necessary because any tuple in the possible answer would become a list after being processed through json.dump() and json.load().
|
||||
# This does introduce some false positive (eg, when the model provides a list value instead of tuple). We hope to find a better solution in the future.
|
||||
if expected_type_description == "tuple" and type(value) == tuple:
|
||||
value = list(value)
|
||||
|
||||
# Allow python auto conversion from int to float
|
||||
if language == "Python" and expected_type_description == "float" and type(value) == int:
|
||||
value = float(value)
|
||||
|
||||
# Type checking
|
||||
# In fact, we only check for Python here.
|
||||
# Type check for other languages are handled by the type converter, and so their value (after conversion) is always correct.
|
||||
type_check_result = type_checker(
|
||||
param,
|
||||
value,
|
||||
possible_answer[param],
|
||||
expected_type_description,
|
||||
expected_type_converted,
|
||||
nested_type_converted,
|
||||
)
|
||||
is_variable = type_check_result["is_variable"]
|
||||
if not type_check_result["valid"]:
|
||||
return type_check_result
|
||||
|
||||
# It doesn't make sense to special handle dictionaries and list of dictionaries if the value is a variable.
|
||||
# We can just treat the variable as a string and use the normal flow.
|
||||
if not is_variable:
|
||||
# Special handle for dictionaries
|
||||
if expected_type_converted == dict:
|
||||
result = dict_checker(param, value, possible_answer[param])
|
||||
if not result["valid"]:
|
||||
return result
|
||||
continue
|
||||
|
||||
# Special handle for list of dictionaries
|
||||
elif expected_type_converted == list and nested_type_converted == dict:
|
||||
result = list_dict_checker(param, value, possible_answer[param])
|
||||
if not result["valid"]:
|
||||
return result
|
||||
continue
|
||||
|
||||
# Special handle for strings
|
||||
elif expected_type_converted == str:
|
||||
# We don't check for case sensitivity for string, as long as it's not a variable
|
||||
result = string_checker(param, value, possible_answer[param])
|
||||
if not result["valid"]:
|
||||
return result
|
||||
continue
|
||||
|
||||
elif expected_type_converted == list:
|
||||
result = list_checker(param, value, possible_answer[param])
|
||||
if not result["valid"]:
|
||||
return result
|
||||
continue
|
||||
|
||||
# Check if the value is within the possible answers
|
||||
if value not in possible_answer[param]:
|
||||
result["valid"] = False
|
||||
result["error"].append( # type: ignore[attr-defined]
|
||||
f"Invalid value for parameter {repr(param)}: {repr(value)}. Expected one of {possible_answer[param]}."
|
||||
)
|
||||
result["error_type"] = "value_error:others"
|
||||
return result
|
||||
|
||||
# Check for optional parameters not provided but allowed
|
||||
for param in possible_answer:
|
||||
if param not in model_params and "" not in possible_answer[param]:
|
||||
result["valid"] = False
|
||||
result["error"].append( # type: ignore[attr-defined]
|
||||
f"Optional parameter {repr(param)} not provided and not marked as optional."
|
||||
)
|
||||
result["error_type"] = "simple_function_checker:missing_optional"
|
||||
return result
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def parallel_function_checker_enforce_order(
|
||||
func_descriptions: list,
|
||||
model_output: list,
|
||||
possible_answers: dict,
|
||||
language: str,
|
||||
model_name: str,
|
||||
):
|
||||
if len(model_output) != len(possible_answers):
|
||||
return {
|
||||
"valid": False,
|
||||
"error": ["Wrong number of functions."],
|
||||
"error_type": "parallel_function_checker_enforce_order:wrong_count",
|
||||
}
|
||||
|
||||
func_name_list = list(possible_answers.keys())
|
||||
possible_answers_list = []
|
||||
|
||||
for key, value in possible_answers.items():
|
||||
possible_answers_list.append({key: value})
|
||||
|
||||
for i in range(len(possible_answers_list)):
|
||||
func_description = find_description(func_descriptions, func_name_list[i])
|
||||
|
||||
result = simple_function_checker(
|
||||
func_description,
|
||||
model_output[i],
|
||||
possible_answers_list[i],
|
||||
language,
|
||||
model_name,
|
||||
)
|
||||
if not result["valid"]:
|
||||
return result
|
||||
|
||||
return {"valid": True, "error": []}
|
||||
|
||||
|
||||
def parallel_function_checker_no_order(
|
||||
func_descriptions: list,
|
||||
model_output: list,
|
||||
possible_answers: list,
|
||||
language: str,
|
||||
model_name: str,
|
||||
):
|
||||
if len(model_output) != len(possible_answers):
|
||||
return {
|
||||
"valid": False,
|
||||
"error": ["Wrong number of functions."],
|
||||
"error_type": "parallel_function_checker_no_order:wrong_count",
|
||||
}
|
||||
|
||||
matched_indices = []
|
||||
|
||||
# We go throught the possible answers one by one, and eliminate the model output that matches the possible answer
|
||||
# It must be this way because we need ground truth to fetch the correct function description
|
||||
for i in range(len(possible_answers)):
|
||||
# possible_answers[i] is a dictionary with only one key
|
||||
func_name_expected = list(possible_answers[i].keys())[0]
|
||||
func_description = find_description(func_descriptions, func_name_expected)
|
||||
|
||||
all_errors = []
|
||||
|
||||
for index in range(len(model_output)):
|
||||
if index in matched_indices:
|
||||
continue
|
||||
|
||||
result = simple_function_checker(
|
||||
func_description,
|
||||
model_output[index],
|
||||
possible_answers[i],
|
||||
language,
|
||||
model_name,
|
||||
)
|
||||
|
||||
if result["valid"]:
|
||||
matched_indices.append(index)
|
||||
break
|
||||
else:
|
||||
all_errors.append(
|
||||
{
|
||||
f"Model Result Index {index}": {
|
||||
"sub_error": result["error"],
|
||||
"sub_error_type": result["error_type"],
|
||||
"model_output_item": model_output[index],
|
||||
"possible_answer_item": possible_answers[i],
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
if not result["valid"]:
|
||||
considered_indices = [i for i in range(len(model_output)) if i not in matched_indices]
|
||||
all_errors.insert(
|
||||
0,
|
||||
f"Could not find a matching function among index {considered_indices} of model output for index {i} of possible answers.", # type: ignore[arg-type]
|
||||
)
|
||||
return {
|
||||
"valid": False,
|
||||
"error": all_errors,
|
||||
"error_type": "parallel_function_checker_no_order:cannot_find_match",
|
||||
}
|
||||
|
||||
return {"valid": True, "error": []}
|
||||
|
||||
|
||||
def multiple_function_checker(
|
||||
func_descriptions: list,
|
||||
model_output: list,
|
||||
possible_answers: list,
|
||||
language: str,
|
||||
model_name: str,
|
||||
):
|
||||
if len(model_output) != len(possible_answers):
|
||||
return {
|
||||
"valid": False,
|
||||
"error": ["Wrong number of functions."],
|
||||
"error_type": "multiple_function_checker:wrong_count",
|
||||
}
|
||||
|
||||
# possible_answers is a list of only one dictionary with only one key
|
||||
func_name_expected = list(possible_answers[0].keys())[0]
|
||||
func_description = find_description(func_descriptions, func_name_expected)
|
||||
return simple_function_checker(
|
||||
func_description,
|
||||
model_output[0],
|
||||
possible_answers[0],
|
||||
language,
|
||||
model_name,
|
||||
)
|
||||
|
||||
|
||||
def patten_matcher(exec_output, expected_result, function_call, is_sanity_check):
|
||||
result = {"valid": True, "error": [], "error_type": "executable_checker:unclear"}
|
||||
|
||||
if type(exec_output) != type(expected_result):
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [
|
||||
f"Wrong execution result type for {repr(function_call)}. Expected type: {type(expected_result)}, but got: {type(exec_output)}."
|
||||
],
|
||||
"error_type": "executable_checker:wrong_result_type",
|
||||
"model_executed_output": exec_output,
|
||||
}
|
||||
if type(exec_output) == dict:
|
||||
# We loose the requirement for the sanity check as the expected result used in the sanity check might not be the most up-to-date one.
|
||||
# This happens when the key is a timestamp or a random number.
|
||||
if is_sanity_check:
|
||||
if len(exec_output) != len(expected_result):
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [
|
||||
f"Wrong execution result pattern for {repr(function_call)}. Expect type Dict, but wrong number of elements in the output. Expected length: {len(expected_result)}, but got: {len(exec_output)}."
|
||||
],
|
||||
"error_type": "executable_checker:wrong_result_type:dict_length",
|
||||
"model_executed_output": exec_output,
|
||||
}
|
||||
else:
|
||||
return result
|
||||
|
||||
for key, value in expected_result.items():
|
||||
if key not in exec_output:
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [
|
||||
f"Wrong execution result pattern for {repr(function_call)}. Expect type Dict, but key {repr(key)} not found in the model output."
|
||||
],
|
||||
"error_type": "executable_checker:wrong_result_type:dict_key_not_found",
|
||||
"model_executed_output": exec_output,
|
||||
}
|
||||
for key, value in exec_output.items():
|
||||
if key not in expected_result:
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [
|
||||
f"Wrong execution result pattern for {repr(function_call)}. Expect type Dict, but key {repr(key)} not expected in the model output."
|
||||
],
|
||||
"error_type": "executable_checker:wrong_result_type:dict_extra_key",
|
||||
"model_executed_output": exec_output,
|
||||
}
|
||||
if type(exec_output) == list:
|
||||
if len(exec_output) != len(expected_result):
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [
|
||||
f"Wrong execution result pattern for {repr(function_call)}. Expect type list, but wrong number of elements in the output. Expected length: {len(expected_result)}, but got: {len(exec_output)}."
|
||||
],
|
||||
"error_type": "executable_checker:wrong_result_type:list_length",
|
||||
"model_executed_output": exec_output,
|
||||
}
|
||||
return result
|
||||
|
||||
|
||||
#### Helper functions for Exec ####
|
||||
def executable_checker_simple(
|
||||
function_call: str,
|
||||
expected_result,
|
||||
expected_result_type: str,
|
||||
is_sanity_check=False,
|
||||
):
|
||||
result = {"valid": True, "error": [], "error_type": "executable_checker:unclear"}
|
||||
|
||||
exec_dict: Any = {}
|
||||
|
||||
try:
|
||||
exec(
|
||||
"from executable_python_function import *" + "\nresult=" + function_call,
|
||||
exec_dict,
|
||||
)
|
||||
exec_output = exec_dict["result"]
|
||||
except NoAPIKeyError as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
result["valid"] = False
|
||||
result["error"].append( # type: ignore[attr-defined]
|
||||
f"Error in execution: {repr(function_call)}. Error: {str(e)}"
|
||||
)
|
||||
result["error_type"] = "executable_checker:execution_error"
|
||||
return result
|
||||
|
||||
# We need to special handle the case where the execution result is a tuple and convert it to a list
|
||||
# Because when json is stored, the tuple is converted to a list, and so the expected result is a list when loaded from json
|
||||
if isinstance(exec_output, tuple):
|
||||
exec_output = list(exec_output)
|
||||
|
||||
if expected_result_type == "exact_match":
|
||||
if exec_output != expected_result:
|
||||
result["valid"] = False
|
||||
result["error"].append( # type: ignore[attr-defined]
|
||||
f"Wrong execution result for {repr(function_call)}. Expected: {expected_result}, but got: {exec_output}."
|
||||
)
|
||||
result["error_type"] = "executable_checker:wrong_result"
|
||||
result["model_executed_output"] = exec_output
|
||||
return result
|
||||
|
||||
elif expected_result_type == "real_time_match":
|
||||
# Allow for 5% difference
|
||||
if (type(expected_result) == float or type(expected_result) == int) and (
|
||||
type(exec_output) == float or type(exec_output) == int
|
||||
):
|
||||
if not (
|
||||
expected_result * (1 - REAL_TIME_MATCH_ALLOWED_DIFFERENCE)
|
||||
<= exec_output
|
||||
<= expected_result * (1 + REAL_TIME_MATCH_ALLOWED_DIFFERENCE)
|
||||
):
|
||||
result["valid"] = False
|
||||
result["error"].append( # type: ignore[attr-defined]
|
||||
f"Wrong execution result for {repr(function_call)}. Expected: {expected_result}, but got: {exec_output}. {REAL_TIME_MATCH_ALLOWED_DIFFERENCE * 100}% difference allowed."
|
||||
)
|
||||
result["error_type"] = "executable_checker:wrong_result_real_time"
|
||||
result["model_executed_output"] = exec_output
|
||||
return result
|
||||
else:
|
||||
result["valid"] = False
|
||||
result["error"].append( # type: ignore[attr-defined]
|
||||
f"Wrong execution result for {repr(function_call)}. Expected: {expected_result}, but got: {exec_output}. Type needs to be float or int for real time match criteria."
|
||||
)
|
||||
result["error_type"] = "executable_checker:wrong_result_real_time"
|
||||
result["model_executed_output"] = exec_output
|
||||
return result
|
||||
|
||||
else:
|
||||
# structural match
|
||||
pattern_match_result = patten_matcher(exec_output, expected_result, function_call, is_sanity_check)
|
||||
if not pattern_match_result["valid"]:
|
||||
return pattern_match_result
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def executable_checker_parallel_no_order(
|
||||
decoded_result: list, expected_exec_result: list, expected_exec_result_type: list
|
||||
):
|
||||
if len(decoded_result) != len(expected_exec_result):
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [
|
||||
f"Wrong number of functions provided. Expected {len(expected_exec_result)}, but got {len(decoded_result)}."
|
||||
],
|
||||
"error_type": "value_error:exec_result_count",
|
||||
}
|
||||
|
||||
matched_indices = []
|
||||
for i in range(len(expected_exec_result)):
|
||||
all_errors = []
|
||||
for index in range(len(decoded_result)):
|
||||
if index in matched_indices:
|
||||
continue
|
||||
|
||||
result = executable_checker_simple(
|
||||
decoded_result[index],
|
||||
expected_exec_result[i],
|
||||
expected_exec_result_type[i],
|
||||
False,
|
||||
)
|
||||
|
||||
if result["valid"]:
|
||||
matched_indices.append(index)
|
||||
break
|
||||
else:
|
||||
all_errors.append(
|
||||
{
|
||||
f"Model Result Index {index}": {
|
||||
"sub_error": result["error"],
|
||||
"sub_error_type": result["error_type"],
|
||||
"model_executed_output": (
|
||||
result["model_executed_output"] if "model_executed_output" in result else None
|
||||
),
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
if not result["valid"]:
|
||||
considered_indices = [i for i in range(len(decoded_result)) if i not in matched_indices]
|
||||
all_errors.insert(
|
||||
0,
|
||||
f"Could not find a matching function among index {considered_indices} of model output for index {i} of possible answers.", # type: ignore[arg-type]
|
||||
)
|
||||
return {
|
||||
"valid": False,
|
||||
"error": all_errors,
|
||||
"error_type": "executable_checker:cannot_find_match",
|
||||
}
|
||||
|
||||
return {"valid": True, "error": [], "error_type": "executable_checker:unclear"}
|
||||
|
||||
|
||||
#### Main function ####
|
||||
def executable_checker_rest(func_call, idx):
|
||||
# Move this here for now to avoid needing to read this file / fix paths to be relative to dataset_dir. Fix when it's actually needed / used.
|
||||
EVAL_GROUND_TRUTH_PATH = "/mnt/wsfuse/fair_llm_v2/datasets/eval/bfcl/rest-eval-response_v5.jsonl" # Ground truth file for v5 for rest execution
|
||||
with open(EVAL_GROUND_TRUTH_PATH, "r") as f:
|
||||
EVAL_GROUND_TRUTH = f.readlines()
|
||||
if "https://geocode.maps.co" in func_call:
|
||||
time.sleep(2)
|
||||
if "requests_get" in func_call:
|
||||
func_call = func_call.replace("requests_get", "requests.get")
|
||||
try:
|
||||
response = eval(func_call)
|
||||
except Exception as e:
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [f"Execution failed. {str(e)}"],
|
||||
"error_type": "executable_checker_rest:execution_error",
|
||||
}
|
||||
|
||||
try:
|
||||
if response.status_code == 200:
|
||||
eval_GT_json = json.loads(EVAL_GROUND_TRUTH[idx])
|
||||
try:
|
||||
if isinstance(eval_GT_json, dict):
|
||||
if isinstance(response.json(), dict):
|
||||
if set(eval_GT_json.keys()) == set(response.json().keys()):
|
||||
return {"valid": True, "error": [], "error_type": ""}
|
||||
return {
|
||||
"valid": False,
|
||||
"error": ["Key inconsistency"],
|
||||
"error_type": "executable_checker_rest:wrong_key",
|
||||
}
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [f"Expected dictionary, but got {type(response.json())}"],
|
||||
"error_type": "executable_checker_rest:wrong_type",
|
||||
}
|
||||
|
||||
elif isinstance(eval_GT_json, list):
|
||||
if isinstance(response.json(), list):
|
||||
if len(eval_GT_json) != len(response.json()):
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [f"Response list length inconsistency."],
|
||||
"error_type": "value_error:exec_result_rest_count",
|
||||
}
|
||||
|
||||
else:
|
||||
for i in range(len(eval_GT_json)):
|
||||
if set(eval_GT_json[i].keys()) != set(response.json()[i].keys()):
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [f"Key inconsistency"],
|
||||
"error_type": "executable_checker_rest:wrong_key",
|
||||
}
|
||||
|
||||
return {"valid": True, "error": []}
|
||||
else:
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [f"Expected list, but got {type(response.json())}"],
|
||||
"error_type": "executable_checker_rest:wrong_type",
|
||||
}
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [f"Expected dict or list, but got {type(response.json())}"],
|
||||
"error_type": "executable_checker_rest:wrong_type",
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [
|
||||
f"Error in execution and type checking. Status code: {response.status_code}. Error: {str(e)}"
|
||||
],
|
||||
"error_type": "executable_checker_rest:response_format_error",
|
||||
}
|
||||
else:
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [f"Execution result status code is not 200, got {response.status_code}"],
|
||||
"error_type": "executable_checker_rest:wrong_status_code",
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"valid": False,
|
||||
"error": [f"Cannot get status code of the response. Error: {str(e)}"],
|
||||
"error_type": "executable_checker_rest:cannot_get_status_code",
|
||||
}
|
||||
|
||||
|
||||
def ast_checker(func_description, model_output, possible_answer, language, test_category, model_name):
|
||||
if "parallel" in test_category:
|
||||
return parallel_function_checker_no_order(func_description, model_output, possible_answer, language, model_name)
|
||||
|
||||
elif "multiple" in test_category:
|
||||
return multiple_function_checker(func_description, model_output, possible_answer, language, model_name)
|
||||
|
||||
else:
|
||||
if len(model_output) != 1:
|
||||
return {
|
||||
"valid": False,
|
||||
"error": ["Wrong number of functions."],
|
||||
"error_type": "simple_function_checker:wrong_count",
|
||||
}
|
||||
|
||||
return simple_function_checker(
|
||||
func_description[0],
|
||||
model_output[0],
|
||||
possible_answer[0],
|
||||
language,
|
||||
model_name,
|
||||
)
|
||||
|
||||
|
||||
def exec_checker(decoded_result: list, func_description: dict, test_category: str):
|
||||
if "multiple" in test_category or "parallel" in test_category:
|
||||
return executable_checker_parallel_no_order(
|
||||
decoded_result,
|
||||
func_description["execution_result"],
|
||||
func_description["execution_result_type"],
|
||||
)
|
||||
|
||||
else:
|
||||
if len(decoded_result) != 1:
|
||||
return {
|
||||
"valid": False,
|
||||
"error": ["Wrong number of functions."],
|
||||
"error_type": "simple_exec_checker:wrong_count",
|
||||
}
|
||||
return executable_checker_simple(
|
||||
decoded_result[0],
|
||||
func_description["execution_result"][0],
|
||||
func_description["execution_result_type"][0],
|
||||
False,
|
||||
)
|
||||
|
||||
|
||||
def is_empty_output(decoded_output):
|
||||
# This function is a patch to the ast decoder for relevance detection
|
||||
# Sometimes the ast decoder will parse successfully, but the input doens't really have a function call
|
||||
# [], [{}], and anything that is not in function calling format is considered empty (and thus should be marked as correct)
|
||||
if not is_function_calling_format_output(decoded_output):
|
||||
return True
|
||||
if len(decoded_output) == 0:
|
||||
return True
|
||||
if len(decoded_output) == 1 and len(decoded_output[0]) == 0:
|
||||
return True
|
||||
|
||||
|
||||
def is_function_calling_format_output(decoded_output):
|
||||
# Ensure the output is a list of dictionaries
|
||||
if type(decoded_output) == list:
|
||||
for item in decoded_output:
|
||||
if type(item) != dict:
|
||||
return False
|
||||
return True
|
||||
return False
|
|
@ -1,40 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""
|
||||
Tree-sitter changes its API with unfortunate frequency. Modules that need it should
|
||||
import it from here so that we can centrally manage things as necessary.
|
||||
"""
|
||||
|
||||
# These currently work with tree-sitter 0.23.0
|
||||
# NOTE: Don't import tree-sitter or any of the language modules in the main module
|
||||
# because not all environments have them. Import lazily inside functions where needed.
|
||||
|
||||
import importlib
|
||||
import typing
|
||||
|
||||
if typing.TYPE_CHECKING:
|
||||
import tree_sitter
|
||||
|
||||
|
||||
def get_language(language: str) -> "tree_sitter.Language":
|
||||
import tree_sitter
|
||||
|
||||
language_module_name = f"tree_sitter_{language}"
|
||||
try:
|
||||
language_module = importlib.import_module(language_module_name)
|
||||
except ModuleNotFoundError as exc:
|
||||
raise ValueError(
|
||||
f"Language {language} is not found. Please install the tree-sitter-{language} package."
|
||||
) from exc
|
||||
return tree_sitter.Language(language_module.language())
|
||||
|
||||
|
||||
def get_parser(language: str, **kwargs) -> "tree_sitter.Parser":
|
||||
import tree_sitter
|
||||
|
||||
lang = get_language(language)
|
||||
return tree_sitter.Parser(lang, **kwargs)
|
File diff suppressed because it is too large
Load diff
|
@ -1,330 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import re
|
||||
from typing import Sequence
|
||||
|
||||
from llama_stack.providers.utils.scoring.basic_scoring_utils import time_limit
|
||||
|
||||
# from minerva
|
||||
SUBSTITUTIONS = [
|
||||
("an ", ""),
|
||||
("a ", ""),
|
||||
(".$", "$"),
|
||||
("\\$", ""),
|
||||
(r"\ ", ""),
|
||||
(" ", ""),
|
||||
("mbox", "text"),
|
||||
(",\\text{and}", ","),
|
||||
("\\text{and}", ","),
|
||||
("\\text{m}", "\\text{}"),
|
||||
]
|
||||
|
||||
REMOVED_EXPRESSIONS = [
|
||||
"square",
|
||||
"ways",
|
||||
"integers",
|
||||
"dollars",
|
||||
"mph",
|
||||
"inches",
|
||||
"ft",
|
||||
"hours",
|
||||
"km",
|
||||
"units",
|
||||
"\\ldots",
|
||||
"sue",
|
||||
"points",
|
||||
"feet",
|
||||
"minutes",
|
||||
"digits",
|
||||
"cents",
|
||||
"degrees",
|
||||
"cm",
|
||||
"gm",
|
||||
"pounds",
|
||||
"meters",
|
||||
"meals",
|
||||
"edges",
|
||||
"students",
|
||||
"childrentickets",
|
||||
"multiples",
|
||||
"\\text{s}",
|
||||
"\\text{.}",
|
||||
"\\text{\ns}",
|
||||
"\\text{}^2",
|
||||
"\\text{}^3",
|
||||
"\\text{\n}",
|
||||
"\\text{}",
|
||||
r"\mathrm{th}",
|
||||
r"^\circ",
|
||||
r"^{\circ}",
|
||||
r"\;",
|
||||
r",\!",
|
||||
"{,}",
|
||||
'"',
|
||||
"\\dots",
|
||||
]
|
||||
|
||||
|
||||
def try_evaluate_frac(expression: str, fmt: str = "0.2e") -> str:
|
||||
if isinstance(expression, float):
|
||||
return expression
|
||||
new_expression = f"{expression}"
|
||||
regex = re.compile(r"\\frac{([^}]+)}{([^}]+)}")
|
||||
for match in re.finditer(regex, expression):
|
||||
try:
|
||||
value = float(match.group(1)) / float(match.group(2))
|
||||
new_expression = new_expression.replace(
|
||||
match.group(),
|
||||
f"{{value:{fmt}}}".format(value=value),
|
||||
1,
|
||||
)
|
||||
except Exception:
|
||||
continue
|
||||
return new_expression
|
||||
|
||||
|
||||
def try_evaluate_latex(expression: str, fmt: str = ".2e") -> str:
|
||||
try:
|
||||
with time_limit(seconds=5):
|
||||
from sympy.parsing.latex import parse_latex
|
||||
|
||||
value = parse_latex(expression).evalf() # type: ignore
|
||||
return f"{{value:{fmt}}}".format(value=value)
|
||||
except Exception:
|
||||
return expression
|
||||
|
||||
|
||||
def first_answer(text: str, markers: Sequence[str] = ("Q:", "A:")) -> str:
|
||||
for marker in markers:
|
||||
text = text.split(marker)[0]
|
||||
return text
|
||||
|
||||
|
||||
def extract_result_from_boxed(answer: str) -> str:
|
||||
box_start = "\\boxed"
|
||||
# format is `\\boxed <value>$` or `\\boxed{<value>}`, with potential white spaces framing `<value>`
|
||||
start = answer.rfind(box_start)
|
||||
if start < 0:
|
||||
return ""
|
||||
answer = answer[start + len(box_start) :].strip()
|
||||
ends_with_curly = answer.startswith("{")
|
||||
i = 0
|
||||
open_braces = 0
|
||||
while i < len(answer):
|
||||
if answer[i] == "{":
|
||||
open_braces += 1
|
||||
elif answer[i] == "}":
|
||||
open_braces -= 1
|
||||
if open_braces == 0:
|
||||
if ends_with_curly:
|
||||
answer = answer[: i + 1].strip()
|
||||
break
|
||||
elif answer[i] == "$":
|
||||
answer = answer[:i].strip()
|
||||
break
|
||||
i += 1
|
||||
else:
|
||||
return ""
|
||||
# remove extra curly braces
|
||||
while True:
|
||||
if answer.startswith("{") and answer.endswith("}"):
|
||||
answer = answer[1:-1].strip()
|
||||
else:
|
||||
break
|
||||
return answer
|
||||
|
||||
|
||||
# from minerva paper + _normalise_result from xavierm
|
||||
def normalize_final_answer(final_answer: str, regex_pattern: str, match_first: bool = True) -> str:
|
||||
"""Extract and normalize a final answer to a quantitative reasoning question."""
|
||||
match = re.findall(regex_pattern, final_answer)
|
||||
extraction: str
|
||||
if len(match) > 0:
|
||||
if match_first:
|
||||
extraction = match[0]
|
||||
else:
|
||||
extraction = match[-1]
|
||||
else:
|
||||
extraction = extract_result_from_boxed(final_answer)
|
||||
|
||||
if len(extraction) == 0:
|
||||
return final_answer
|
||||
else:
|
||||
final_answer = extraction
|
||||
final_answer = final_answer.split("=")[-1]
|
||||
for before, after in SUBSTITUTIONS:
|
||||
final_answer = final_answer.replace(before, after)
|
||||
for expr in REMOVED_EXPRESSIONS:
|
||||
final_answer = final_answer.replace(expr, "")
|
||||
# Extract answer that is in LaTeX math, is bold,
|
||||
# is surrounded by a box, etc.
|
||||
final_answer = re.sub(r"(.*?)(\$)(.*?)(\$)(.*)", "$\\3$", final_answer)
|
||||
final_answer = re.sub(r"(\\text\{)(.*?)(\})", "\\2", final_answer)
|
||||
final_answer = re.sub(r"(\\textbf\{)(.*?)(\})", "\\2", final_answer)
|
||||
final_answer = re.sub(r"(\\overline\{)(.*?)(\})", "\\2", final_answer)
|
||||
final_answer = re.sub(r"(\\boxed\{)(.*)(\})", "\\2", final_answer)
|
||||
# Normalize shorthand TeX:
|
||||
# \fracab -> \frac{a}{b}
|
||||
# \frac{abc}{bef} -> \frac{abc}{bef}
|
||||
# \fracabc -> \frac{a}{b}c
|
||||
# \sqrta -> \sqrt{a}
|
||||
# \sqrtab -> sqrt{a}b
|
||||
final_answer = re.sub(r"(frac)([^{])(.)", "frac{\\2}{\\3}", final_answer)
|
||||
final_answer = re.sub(r"(sqrt)([^{])", "sqrt{\\2}", final_answer)
|
||||
final_answer = final_answer.replace("$", "")
|
||||
# Normalize 100,000 -> 100000
|
||||
if final_answer.replace(",", "").isdigit():
|
||||
final_answer = final_answer.replace(",", "")
|
||||
# If the final answer is a single letter in parentheses, remove the parentheses
|
||||
# Example: (a) -> a (but not (ab) -> ab)
|
||||
if re.match(r"\([a-zA-Z]\)", final_answer):
|
||||
final_answer = final_answer[1]
|
||||
return _normalise_result(final_answer)
|
||||
|
||||
|
||||
def _normalise_result(string: str) -> str:
|
||||
# linebreaks
|
||||
string = string.replace("\n", "")
|
||||
|
||||
# remove inverse spaces
|
||||
string = string.replace("\\!", "")
|
||||
|
||||
# replace \\ with \
|
||||
string = string.replace("\\\\", "\\")
|
||||
|
||||
# replace tfrac and dfrac with frac
|
||||
string = string.replace("cfrac", "frac")
|
||||
string = string.replace("tfrac", "frac")
|
||||
string = string.replace("dfrac", "frac")
|
||||
|
||||
# remove \left and \right
|
||||
string = string.replace("\\left", "")
|
||||
string = string.replace("\\le", "")
|
||||
string = string.replace("\\right", "")
|
||||
|
||||
# Remove circ (degrees)
|
||||
string = string.replace("^{\\circ}", "")
|
||||
string = string.replace("^\\circ", "")
|
||||
|
||||
# remove dollar signs
|
||||
string = string.replace("\\$", "")
|
||||
|
||||
# remove units (on the right)
|
||||
string = _remove_right_units(string)
|
||||
|
||||
# remove percentage
|
||||
string = string.replace("\\%", "")
|
||||
string = string.replace(r"\%", "")
|
||||
|
||||
# " 0." equivalent to " ." and "{0." equivalent to "{." Alternatively, add "0" if "." is the start of the string
|
||||
string = string.replace(" .", " 0.")
|
||||
string = string.replace("{.", "{0.")
|
||||
# if empty, return empty string
|
||||
if len(string) == 0:
|
||||
return string
|
||||
if string[0] == ".":
|
||||
string = "0" + string
|
||||
|
||||
# to consider: get rid of e.g. "k = " or "q = " at beginning
|
||||
string = string.split("=")[-1]
|
||||
|
||||
# fix sqrt3 --> sqrt{3}
|
||||
string = _fix_sqrt(string)
|
||||
|
||||
# remove spaces
|
||||
string = string.replace(" ", "")
|
||||
|
||||
# \frac1b or \frac12 --> \frac{1}{b} and \frac{1}{2}, etc. Even works with \frac1{72} (but not \frac{72}1). Also does a/b --> \\frac{a}{b}
|
||||
string = _fix_fracs(string)
|
||||
|
||||
# manually change 0.5 --> \frac{1}{2}
|
||||
if string == "0.5":
|
||||
string = "\\frac{1}{2}"
|
||||
|
||||
# NOTE: X/Y changed to \frac{X}{Y} in dataset, but in simple cases fix in case the model output is X/Y
|
||||
string = _fix_a_slash_b(string)
|
||||
|
||||
return string
|
||||
|
||||
|
||||
def _remove_right_units(string: str) -> str:
|
||||
# "\\text{ " only ever occurs (at least in the val set) when describing units
|
||||
try:
|
||||
if "\\text{ " in string:
|
||||
splits = string.split("\\text{ ")
|
||||
assert len(splits) == 2
|
||||
return splits[0]
|
||||
else:
|
||||
return string
|
||||
except AssertionError:
|
||||
return string
|
||||
|
||||
|
||||
def _fix_sqrt(string: str) -> str:
|
||||
if "\\sqrt" not in string:
|
||||
return string
|
||||
splits = string.split("\\sqrt")
|
||||
new_string = splits[0]
|
||||
for split in splits[1:]:
|
||||
if len(split) == 0:
|
||||
return string
|
||||
if split[0] != "{":
|
||||
a = split[0]
|
||||
new_substr = "\\sqrt{" + a + "}" + split[1:]
|
||||
else:
|
||||
new_substr = "\\sqrt" + split
|
||||
new_string += new_substr
|
||||
return new_string
|
||||
|
||||
|
||||
def _fix_fracs(string: str) -> str:
|
||||
substrs = string.split("\\frac")
|
||||
new_str = substrs[0]
|
||||
if len(substrs) > 1:
|
||||
substrs = substrs[1:]
|
||||
for substr in substrs:
|
||||
new_str += "\\frac"
|
||||
if len(substr) == 0:
|
||||
return string
|
||||
if substr[0] == "{":
|
||||
new_str += substr
|
||||
else:
|
||||
try:
|
||||
assert len(substr) >= 2
|
||||
except AssertionError:
|
||||
return string
|
||||
a = substr[0]
|
||||
b = substr[1]
|
||||
if b != "{":
|
||||
if len(substr) > 2:
|
||||
post_substr = substr[2:]
|
||||
new_str += "{" + a + "}{" + b + "}" + post_substr
|
||||
else:
|
||||
new_str += "{" + a + "}{" + b + "}"
|
||||
else:
|
||||
if len(substr) > 2:
|
||||
post_substr = substr[2:]
|
||||
new_str += "{" + a + "}" + b + post_substr
|
||||
else:
|
||||
new_str += "{" + a + "}" + b
|
||||
string = new_str
|
||||
return string
|
||||
|
||||
|
||||
def _fix_a_slash_b(string: str) -> str:
|
||||
if len(string.split("/")) != 2:
|
||||
return string
|
||||
a = string.split("/")[0]
|
||||
b = string.split("/")[1]
|
||||
try:
|
||||
ia = int(a)
|
||||
ib = int(b)
|
||||
assert string == "{}/{}".format(ia, ib)
|
||||
new_string = "\\frac{" + str(ia) + "}{" + str(ib) + "}"
|
||||
return new_string
|
||||
except (ValueError, AssertionError):
|
||||
return string
|
|
@ -1,27 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
|
||||
from .config import BraintrustScoringConfig
|
||||
|
||||
|
||||
class BraintrustProviderDataValidator(BaseModel):
|
||||
openai_api_key: str
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
config: BraintrustScoringConfig,
|
||||
deps: Dict[Api, Any],
|
||||
):
|
||||
from .braintrust import BraintrustScoringImpl
|
||||
|
||||
impl = BraintrustScoringImpl(config, deps[Api.datasetio], deps[Api.datasets])
|
||||
await impl.initialize()
|
||||
return impl
|
|
@ -1,232 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import os
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from autoevals.llm import Factuality
|
||||
from autoevals.ragas import (
|
||||
AnswerCorrectness,
|
||||
AnswerRelevancy,
|
||||
AnswerSimilarity,
|
||||
ContextEntityRecall,
|
||||
ContextPrecision,
|
||||
ContextRecall,
|
||||
ContextRelevancy,
|
||||
Faithfulness,
|
||||
)
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.scoring import (
|
||||
ScoreBatchResponse,
|
||||
ScoreResponse,
|
||||
Scoring,
|
||||
ScoringResult,
|
||||
ScoringResultRow,
|
||||
)
|
||||
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnParams
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
|
||||
from llama_stack.providers.utils.common.data_schema_validator import (
|
||||
get_valid_schemas,
|
||||
validate_dataset_schema,
|
||||
validate_row_schema,
|
||||
)
|
||||
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_metrics
|
||||
|
||||
from .config import BraintrustScoringConfig
|
||||
from .scoring_fn.fn_defs.answer_correctness import answer_correctness_fn_def
|
||||
from .scoring_fn.fn_defs.answer_relevancy import answer_relevancy_fn_def
|
||||
from .scoring_fn.fn_defs.answer_similarity import answer_similarity_fn_def
|
||||
from .scoring_fn.fn_defs.context_entity_recall import context_entity_recall_fn_def
|
||||
from .scoring_fn.fn_defs.context_precision import context_precision_fn_def
|
||||
from .scoring_fn.fn_defs.context_recall import context_recall_fn_def
|
||||
from .scoring_fn.fn_defs.context_relevancy import context_relevancy_fn_def
|
||||
from .scoring_fn.fn_defs.factuality import factuality_fn_def
|
||||
from .scoring_fn.fn_defs.faithfulness import faithfulness_fn_def
|
||||
|
||||
|
||||
class BraintrustScoringFnEntry(BaseModel):
|
||||
identifier: str
|
||||
evaluator: Any
|
||||
fn_def: ScoringFn
|
||||
|
||||
|
||||
SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY = [
|
||||
BraintrustScoringFnEntry(
|
||||
identifier="braintrust::factuality",
|
||||
evaluator=Factuality(),
|
||||
fn_def=factuality_fn_def,
|
||||
),
|
||||
BraintrustScoringFnEntry(
|
||||
identifier="braintrust::answer-correctness",
|
||||
evaluator=AnswerCorrectness(),
|
||||
fn_def=answer_correctness_fn_def,
|
||||
),
|
||||
BraintrustScoringFnEntry(
|
||||
identifier="braintrust::answer-relevancy",
|
||||
evaluator=AnswerRelevancy(),
|
||||
fn_def=answer_relevancy_fn_def,
|
||||
),
|
||||
BraintrustScoringFnEntry(
|
||||
identifier="braintrust::answer-similarity",
|
||||
evaluator=AnswerSimilarity(),
|
||||
fn_def=answer_similarity_fn_def,
|
||||
),
|
||||
BraintrustScoringFnEntry(
|
||||
identifier="braintrust::faithfulness",
|
||||
evaluator=Faithfulness(),
|
||||
fn_def=faithfulness_fn_def,
|
||||
),
|
||||
BraintrustScoringFnEntry(
|
||||
identifier="braintrust::context-entity-recall",
|
||||
evaluator=ContextEntityRecall(),
|
||||
fn_def=context_entity_recall_fn_def,
|
||||
),
|
||||
BraintrustScoringFnEntry(
|
||||
identifier="braintrust::context-precision",
|
||||
evaluator=ContextPrecision(),
|
||||
fn_def=context_precision_fn_def,
|
||||
),
|
||||
BraintrustScoringFnEntry(
|
||||
identifier="braintrust::context-recall",
|
||||
evaluator=ContextRecall(),
|
||||
fn_def=context_recall_fn_def,
|
||||
),
|
||||
BraintrustScoringFnEntry(
|
||||
identifier="braintrust::context-relevancy",
|
||||
evaluator=ContextRelevancy(),
|
||||
fn_def=context_relevancy_fn_def,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
class BraintrustScoringImpl(
|
||||
Scoring,
|
||||
ScoringFunctionsProtocolPrivate,
|
||||
NeedsRequestProviderData,
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
config: BraintrustScoringConfig,
|
||||
datasetio_api: DatasetIO,
|
||||
datasets_api: Datasets,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.datasetio_api = datasetio_api
|
||||
self.datasets_api = datasets_api
|
||||
|
||||
self.braintrust_evaluators = {
|
||||
entry.identifier: entry.evaluator for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY
|
||||
}
|
||||
self.supported_fn_defs_registry = {
|
||||
entry.identifier: entry.fn_def for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY
|
||||
}
|
||||
|
||||
async def initialize(self) -> None: ...
|
||||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
async def list_scoring_functions(self) -> List[ScoringFn]:
|
||||
scoring_fn_defs_list = list(self.supported_fn_defs_registry.values())
|
||||
for f in scoring_fn_defs_list:
|
||||
assert f.identifier.startswith("braintrust"), (
|
||||
"All braintrust scoring fn must have identifier prefixed with 'braintrust'! "
|
||||
)
|
||||
|
||||
return scoring_fn_defs_list
|
||||
|
||||
async def register_scoring_function(self, scoring_fn: ScoringFn) -> None:
|
||||
raise NotImplementedError("Registering scoring function not allowed for braintrust provider")
|
||||
|
||||
async def set_api_key(self) -> None:
|
||||
# api key is in the request headers
|
||||
if not self.config.openai_api_key:
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.openai_api_key:
|
||||
raise ValueError(
|
||||
'Pass OpenAI API Key in the header X-LlamaStack-Provider-Data as { "openai_api_key": <your api key>}'
|
||||
)
|
||||
self.config.openai_api_key = provider_data.openai_api_key
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = self.config.openai_api_key
|
||||
|
||||
async def score_batch(
|
||||
self,
|
||||
dataset_id: str,
|
||||
scoring_functions: Dict[str, Optional[ScoringFnParams]],
|
||||
save_results_dataset: bool = False,
|
||||
) -> ScoreBatchResponse:
|
||||
await self.set_api_key()
|
||||
|
||||
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
||||
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
|
||||
|
||||
all_rows = await self.datasetio_api.iterrows(
|
||||
dataset_id=dataset_id,
|
||||
limit=-1,
|
||||
)
|
||||
res = await self.score(input_rows=all_rows.data, scoring_functions=scoring_functions)
|
||||
if save_results_dataset:
|
||||
# TODO: persist and register dataset on to server for reading
|
||||
# self.datasets_api.register_dataset()
|
||||
raise NotImplementedError("Save results dataset not implemented yet")
|
||||
|
||||
return ScoreBatchResponse(
|
||||
results=res.results,
|
||||
)
|
||||
|
||||
async def score_row(
|
||||
self, input_row: Dict[str, Any], scoring_fn_identifier: Optional[str] = None
|
||||
) -> ScoringResultRow:
|
||||
validate_row_schema(input_row, get_valid_schemas(Api.scoring.value))
|
||||
await self.set_api_key()
|
||||
assert scoring_fn_identifier is not None, "scoring_fn_identifier cannot be None"
|
||||
expected_answer = input_row["expected_answer"]
|
||||
generated_answer = input_row["generated_answer"]
|
||||
input_query = input_row["input_query"]
|
||||
evaluator = self.braintrust_evaluators[scoring_fn_identifier]
|
||||
|
||||
result = evaluator(
|
||||
generated_answer,
|
||||
expected_answer,
|
||||
input=input_query,
|
||||
context=input_row["context"] if "context" in input_row else None,
|
||||
)
|
||||
score = result.score
|
||||
return {"score": score, "metadata": result.metadata}
|
||||
|
||||
async def score(
|
||||
self,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
scoring_functions: Dict[str, Optional[ScoringFnParams]],
|
||||
) -> ScoreResponse:
|
||||
await self.set_api_key()
|
||||
res = {}
|
||||
for scoring_fn_id in scoring_functions:
|
||||
if scoring_fn_id not in self.supported_fn_defs_registry:
|
||||
raise ValueError(f"Scoring function {scoring_fn_id} is not supported.")
|
||||
|
||||
score_results = [await self.score_row(input_row, scoring_fn_id) for input_row in input_rows]
|
||||
aggregation_functions = self.supported_fn_defs_registry[scoring_fn_id].params.aggregation_functions
|
||||
|
||||
# override scoring_fn params if provided
|
||||
if scoring_functions[scoring_fn_id] is not None:
|
||||
override_params = scoring_functions[scoring_fn_id]
|
||||
if override_params.aggregation_functions:
|
||||
aggregation_functions = override_params.aggregation_functions
|
||||
|
||||
agg_results = aggregate_metrics(score_results, aggregation_functions)
|
||||
res[scoring_fn_id] = ScoringResult(
|
||||
score_rows=score_results,
|
||||
aggregated_results=agg_results,
|
||||
)
|
||||
|
||||
return ScoreResponse(
|
||||
results=res,
|
||||
)
|
|
@ -1,21 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class BraintrustScoringConfig(BaseModel):
|
||||
openai_api_key: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The OpenAI API Key",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
return {
|
||||
"openai_api_key": "${env.OPENAI_API_KEY:}",
|
||||
}
|
|
@ -1,5 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
|
@ -1,5 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
|
@ -1,24 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
answer_correctness_fn_def = ScoringFn(
|
||||
identifier="braintrust::answer-correctness",
|
||||
description=(
|
||||
"Scores the correctness of the answer based on the ground truth. "
|
||||
"Uses Braintrust LLM-based scorer from autoevals library."
|
||||
),
|
||||
provider_id="braintrust",
|
||||
provider_resource_id="answer-correctness",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
|
@ -1,24 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
answer_relevancy_fn_def = ScoringFn(
|
||||
identifier="braintrust::answer-relevancy",
|
||||
description=(
|
||||
"Test output relevancy against the input query using Braintrust LLM scorer. "
|
||||
"See: github.com/braintrustdata/autoevals"
|
||||
),
|
||||
provider_id="braintrust",
|
||||
provider_resource_id="answer-relevancy",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
|
@ -1,24 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
answer_similarity_fn_def = ScoringFn(
|
||||
identifier="braintrust::answer-similarity",
|
||||
description=(
|
||||
"Test output similarity against expected value using Braintrust LLM scorer. "
|
||||
"See: github.com/braintrustdata/autoevals"
|
||||
),
|
||||
provider_id="braintrust",
|
||||
provider_resource_id="answer-similarity",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
|
@ -1,24 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
context_entity_recall_fn_def = ScoringFn(
|
||||
identifier="braintrust::context-entity-recall",
|
||||
description=(
|
||||
"Evaluates how well the context captures the named entities present in the "
|
||||
"reference answer. See: github.com/braintrustdata/autoevals"
|
||||
),
|
||||
provider_id="braintrust",
|
||||
provider_resource_id="context-entity-recall",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
|
@ -1,24 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
context_precision_fn_def = ScoringFn(
|
||||
identifier="braintrust::context-precision",
|
||||
description=(
|
||||
"Measures how much of the provided context is actually relevant to answering the "
|
||||
"question. See: github.com/braintrustdata/autoevals"
|
||||
),
|
||||
provider_id="braintrust",
|
||||
provider_resource_id="context-precision",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
|
@ -1,24 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
context_recall_fn_def = ScoringFn(
|
||||
identifier="braintrust::context-recall",
|
||||
description=(
|
||||
"Evaluates how well the context covers the information needed to answer the "
|
||||
"question. See: github.com/braintrustdata/autoevals"
|
||||
),
|
||||
provider_id="braintrust",
|
||||
provider_resource_id="context-recall",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
|
@ -1,23 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
context_relevancy_fn_def = ScoringFn(
|
||||
identifier="braintrust::context-relevancy",
|
||||
description=(
|
||||
"Assesses how relevant the provided context is to the given question. See: github.com/braintrustdata/autoevals"
|
||||
),
|
||||
provider_id="braintrust",
|
||||
provider_resource_id="context-relevancy",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
|
@ -1,24 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
factuality_fn_def = ScoringFn(
|
||||
identifier="braintrust::factuality",
|
||||
description=(
|
||||
"Test output factuality against expected value using Braintrust LLM scorer. "
|
||||
"See: github.com/braintrustdata/autoevals"
|
||||
),
|
||||
provider_id="braintrust",
|
||||
provider_resource_id="factuality",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
|
@ -1,24 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
faithfulness_fn_def = ScoringFn(
|
||||
identifier="braintrust::faithfulness",
|
||||
description=(
|
||||
"Test output faithfulness to the input query using Braintrust LLM scorer. "
|
||||
"See: github.com/braintrustdata/autoevals"
|
||||
),
|
||||
provider_id="braintrust",
|
||||
provider_resource_id="faithfulness",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
|
@ -1,21 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict
|
||||
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
|
||||
from .config import LlmAsJudgeScoringConfig
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
config: LlmAsJudgeScoringConfig,
|
||||
deps: Dict[Api, Any],
|
||||
):
|
||||
from .scoring import LlmAsJudgeScoringImpl
|
||||
|
||||
impl = LlmAsJudgeScoringImpl(config, deps[Api.datasetio], deps[Api.datasets], deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
|
@ -1,14 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class LlmAsJudgeScoringConfig(BaseModel):
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
|
||||
return {}
|
|
@ -1,110 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.inference.inference import Inference
|
||||
from llama_stack.apis.scoring import (
|
||||
ScoreBatchResponse,
|
||||
ScoreResponse,
|
||||
Scoring,
|
||||
ScoringResult,
|
||||
)
|
||||
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnParams
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
|
||||
from llama_stack.providers.utils.common.data_schema_validator import (
|
||||
get_valid_schemas,
|
||||
validate_dataset_schema,
|
||||
)
|
||||
|
||||
from .config import LlmAsJudgeScoringConfig
|
||||
from .scoring_fn.llm_as_judge_scoring_fn import LlmAsJudgeScoringFn
|
||||
|
||||
LLM_JUDGE_FN = LlmAsJudgeScoringFn
|
||||
|
||||
|
||||
class LlmAsJudgeScoringImpl(
|
||||
Scoring,
|
||||
ScoringFunctionsProtocolPrivate,
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
config: LlmAsJudgeScoringConfig,
|
||||
datasetio_api: DatasetIO,
|
||||
datasets_api: Datasets,
|
||||
inference_api: Inference,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.datasetio_api = datasetio_api
|
||||
self.datasets_api = datasets_api
|
||||
self.inference_api = inference_api
|
||||
|
||||
async def initialize(self) -> None:
|
||||
impl = LLM_JUDGE_FN(inference_api=self.inference_api)
|
||||
self.llm_as_judge_fn = impl
|
||||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
async def list_scoring_functions(self) -> List[ScoringFn]:
|
||||
scoring_fn_defs_list = self.llm_as_judge_fn.get_supported_scoring_fn_defs()
|
||||
|
||||
for f in self.llm_as_judge_fn.get_supported_scoring_fn_defs():
|
||||
assert f.identifier.startswith("llm-as-judge"), (
|
||||
"All llm-as-judge scoring fn must have identifier prefixed with 'llm-as-judge'! "
|
||||
)
|
||||
|
||||
return scoring_fn_defs_list
|
||||
|
||||
async def register_scoring_function(self, function_def: ScoringFn) -> None:
|
||||
self.llm_as_judge_fn.register_scoring_fn_def(function_def)
|
||||
|
||||
async def score_batch(
|
||||
self,
|
||||
dataset_id: str,
|
||||
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
||||
save_results_dataset: bool = False,
|
||||
) -> ScoreBatchResponse:
|
||||
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
||||
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
|
||||
|
||||
all_rows = await self.datasetio_api.iterrows(
|
||||
dataset_id=dataset_id,
|
||||
limit=-1,
|
||||
)
|
||||
res = await self.score(
|
||||
input_rows=all_rows.data,
|
||||
scoring_functions=scoring_functions,
|
||||
)
|
||||
if save_results_dataset:
|
||||
# TODO: persist and register dataset on to server for reading
|
||||
# self.datasets_api.register_dataset()
|
||||
raise NotImplementedError("Save results dataset not implemented yet")
|
||||
|
||||
return ScoreBatchResponse(
|
||||
results=res.results,
|
||||
)
|
||||
|
||||
async def score(
|
||||
self,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
||||
) -> ScoreResponse:
|
||||
res = {}
|
||||
for scoring_fn_id in scoring_functions.keys():
|
||||
scoring_fn = self.llm_as_judge_fn
|
||||
scoring_fn_params = scoring_functions.get(scoring_fn_id, None)
|
||||
score_results = await scoring_fn.score(input_rows, scoring_fn_id, scoring_fn_params)
|
||||
agg_results = await scoring_fn.aggregate(score_results, scoring_fn_id, scoring_fn_params)
|
||||
res[scoring_fn_id] = ScoringResult(
|
||||
score_rows=score_results,
|
||||
aggregated_results=agg_results,
|
||||
)
|
||||
|
||||
return ScoreResponse(
|
||||
results=res,
|
||||
)
|
|
@ -1,5 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
|
@ -1,5 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
|
@ -1,96 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
LLMAsJudgeScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Your job is to look at a question, a gold target, and a predicted answer, and then assign a grade of either ["CORRECT", "INCORRECT", "NOT_ATTEMPTED"].
|
||||
First, I will give examples of each grade, and then you will grade a new example.
|
||||
The following are examples of CORRECT predicted answers.
|
||||
```
|
||||
Question: What are the names of Barack Obama's children?
|
||||
Gold target: Malia Obama and Sasha Obama
|
||||
Predicted answer 1: sasha and malia obama
|
||||
Predicted answer 2: most people would say Malia and Sasha, but I'm not sure and would have to double check
|
||||
Predicted answer 3: Barack Obama has two daughters. Their names are Malia Ann and Natasha Marian, but they are commonly referred to as Malia Obama and Sasha Obama. Malia was born on July 4, 1998, and Sasha was born on June 10, 2001.
|
||||
```
|
||||
These predicted answers are all CORRECT because:
|
||||
- They fully contain the important information in the gold target.
|
||||
- They do not contain any information that contradicts the gold target.
|
||||
- Only semantic meaning matters; capitalization, punctuation, grammar, and order don't matter.
|
||||
- Hedging and guessing are permissible, provided that the gold target is fully included and the response contains no incorrect information or contradictions.
|
||||
The following are examples of INCORRECT predicted answers.
|
||||
```
|
||||
Question: What are the names of Barack Obama's children?
|
||||
Gold target: Malia and Sasha
|
||||
Predicted answer 1: Malia.
|
||||
Predicted answer 2: Malia, Sasha, and Susan.
|
||||
Predicted answer 3: Barack Obama does not have any children.
|
||||
Predicted answer 4: I think it's either Malia and Sasha. Or it could be Malia and Jackie. Or it could be Joey and Malia.
|
||||
Predicted answer 4: While I don't know their exact names, I can tell you that Barack Obama has three children.
|
||||
Predicted answer 5: It's possible you may mean Betsy and Olivia. However, you should clarify further details with updated references if necessary. Is that the correct answer?
|
||||
Predicted answer 6: It may be the case that Obama's child is named James. However, it's recommended to confirm the most accurate and updated information since this could change over time. This model may not always reflect the most current information.
|
||||
```
|
||||
These predicted answers are all INCORRECT because:
|
||||
- A factual statement in the answer contradicts the gold target. Incorrect statements that have some hedging (e.g., "it is possible that", "although i'm not sure, i think") are also considered incorrect.
|
||||
The following are examples of NOT_ATTEMPTED predicted answers.
|
||||
```
|
||||
Question: What are the names of Barack Obama's children?
|
||||
Gold target: Malia and Sasha
|
||||
Predicted answer 1: I don't know.
|
||||
Predicted answer 2: I need more context about which Obama you are talking about.
|
||||
Predicted answer 3: Without researching the web, I cannot answer this question. However, I can tell you that Barack Obama has two children.
|
||||
Predicted answer 4: Barack Obama has two children. I know that one of them is Malia, but I'm not sure about the other one.
|
||||
```
|
||||
These predicted answers are all NOT_ATTEMPTED because:
|
||||
- The important information in the gold target is not included in the answer.
|
||||
- No statements in the answer contradict the gold target.
|
||||
Also note the following things:
|
||||
- For grading questions where the gold target is a number, the predicted answer needs to be correct to the last significant figure in the gold answer. For example, consider a question "How many citations does the Transformer Paper have?" with gold target "120k".
|
||||
- Predicted answers "120k", "124k", and 115k" are all CORRECT.
|
||||
- Predicted answers "100k" and "113k" are INCORRECT.
|
||||
- Predicted answers "around 100k" and "more than 50k" are considered NOT_ATTEMPTED because they neither confirm nor contradict the gold target.
|
||||
- The gold target may contain more information than the question. In such cases, the predicted answer only needs to contain the information that is in the question.
|
||||
- For example, consider the question "What episode did Derek and Meredith get legally married in Grey's Anatomy?" with gold target "Season 7, Episode 20: White Wedding". Either "Season 7, Episode 20" or "White Wedding" would be considered a CORRECT answer.
|
||||
- Do not punish predicted answers if they omit information that would be clearly inferred from the question.
|
||||
- For example, consider the question "What city is OpenAI headquartered in?" and the gold target "San Francisco, California". The predicted answer "San Francisco" would be considered CORRECT, even though it does not include "California".
|
||||
- Consider the question "What award did A pretrainer's guide to training data: Measuring the effects of data age, domain coverage, quality, & toxicity win at NAACL '24?", the gold target is "Outstanding Paper Award". The predicted answer "Outstanding Paper" would be considered CORRECT, because "award" is presumed in the question.
|
||||
- For the question "What is the height of Jason Wei in meters?", the gold target is "1.73 m". The predicted answer "1.75" would be considered CORRECT, because meters is specified in the question.
|
||||
- For the question "What is the name of Barack Obama's wife?", the gold target is "Michelle Obama". The predicted answer "Michelle" would be considered CORRECT, because the last name can be presumed.
|
||||
- Do not punish for typos in people's name if it's clearly the same name.
|
||||
- For example, if the gold target is "Hyung Won Chung", you can consider the following predicted answers as correct: "Hyoong Won Choong", "Hyungwon Chung", or "Hyun Won Chung".
|
||||
Here is a new example. Simply reply with either CORRECT, INCORRECT, NOT ATTEMPTED. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
```
|
||||
Question: {input_query}
|
||||
Gold target: {expected_answer}
|
||||
Predicted answer: {generated_answer}
|
||||
```
|
||||
Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
C: NOT_ATTEMPTED
|
||||
Just return the letters "A", "B", or "C", with no text around it.
|
||||
""".strip()
|
||||
|
||||
|
||||
llm_as_judge_405b_simpleqa = ScoringFn(
|
||||
identifier="llm-as-judge::405b-simpleqa",
|
||||
description="Llm As Judge Scoring Function for SimpleQA Benchmark (https://github.com/openai/simple-evals/blob/main/simpleqa_eval.py)",
|
||||
return_type=NumberType(),
|
||||
provider_id="llm-as-judge",
|
||||
provider_resource_id="llm-as-judge-405b-simpleqa",
|
||||
params=LLMAsJudgeScoringFnParams(
|
||||
judge_model="meta-llama/Llama-3.1-405B-Instruct",
|
||||
prompt_template=GRADER_TEMPLATE,
|
||||
judge_score_regexes=[r"(A|B|C)"],
|
||||
aggregation_functions=[AggregationFunctionType.categorical_count.value],
|
||||
),
|
||||
)
|
|
@ -1,20 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import LLMAsJudgeScoringFnParams, ScoringFn
|
||||
|
||||
llm_as_judge_base = ScoringFn(
|
||||
identifier="llm-as-judge::base",
|
||||
description="Llm As Judge Scoring Function",
|
||||
return_type=NumberType(),
|
||||
provider_id="llm-as-judge",
|
||||
provider_resource_id="llm-as-judge-base",
|
||||
params=LLMAsJudgeScoringFnParams(
|
||||
judge_model="meta-llama/Llama-3.1-405B-Instruct",
|
||||
prompt_template="Enter custom LLM as Judge Prompt Template",
|
||||
),
|
||||
)
|
|
@ -1,79 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import re
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_stack.apis.inference.inference import Inference, UserMessage
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
|
||||
|
||||
from .fn_defs.llm_as_judge_405b_simpleqa import llm_as_judge_405b_simpleqa
|
||||
from .fn_defs.llm_as_judge_base import llm_as_judge_base
|
||||
|
||||
|
||||
class LlmAsJudgeScoringFn(RegisteredBaseScoringFn):
|
||||
"""
|
||||
A scoring_fn that assigns
|
||||
"""
|
||||
|
||||
def __init__(self, inference_api: Inference, *arg, **kwargs) -> None:
|
||||
super().__init__(*arg, **kwargs)
|
||||
self.inference_api = inference_api
|
||||
self.supported_fn_defs_registry = {
|
||||
llm_as_judge_base.identifier: llm_as_judge_base,
|
||||
llm_as_judge_405b_simpleqa.identifier: llm_as_judge_405b_simpleqa,
|
||||
}
|
||||
|
||||
async def score_row(
|
||||
self,
|
||||
input_row: Dict[str, Any],
|
||||
scoring_fn_identifier: Optional[str] = None,
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> ScoringResultRow:
|
||||
assert scoring_fn_identifier is not None, "Scoring function identifier not found."
|
||||
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
|
||||
|
||||
# override params if scoring_params is provided
|
||||
if scoring_params is not None:
|
||||
fn_def.params = scoring_params
|
||||
|
||||
assert fn_def.params is not None, f"LLMAsJudgeparams not found for {fn_def}."
|
||||
assert fn_def.params.prompt_template is not None, "LLM Judge prompt_template not found."
|
||||
assert fn_def.params.judge_score_regexes is not None, "LLM Judge judge_score_regexes not found."
|
||||
|
||||
input_query = input_row["input_query"]
|
||||
expected_answer = input_row["expected_answer"]
|
||||
generated_answer = input_row["generated_answer"]
|
||||
|
||||
judge_input_msg = fn_def.params.prompt_template.format(
|
||||
input_query=input_query,
|
||||
expected_answer=expected_answer,
|
||||
generated_answer=generated_answer,
|
||||
)
|
||||
|
||||
judge_response = await self.inference_api.chat_completion(
|
||||
model_id=fn_def.params.judge_model,
|
||||
messages=[
|
||||
UserMessage(
|
||||
content=judge_input_msg,
|
||||
),
|
||||
],
|
||||
)
|
||||
content = judge_response.completion_message.content
|
||||
rating_regexes = fn_def.params.judge_score_regexes
|
||||
|
||||
judge_rating = None
|
||||
for regex in rating_regexes:
|
||||
match = re.search(regex, content)
|
||||
if match:
|
||||
judge_rating = match.group(1)
|
||||
break
|
||||
|
||||
return {
|
||||
"score": judge_rating,
|
||||
"judge_feedback": content,
|
||||
}
|
|
@ -7,22 +7,28 @@
|
|||
from typing import List
|
||||
|
||||
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec
|
||||
from llama_stack.providers.utils.kvstore import kvstore_dependencies
|
||||
|
||||
|
||||
def available_providers() -> List[ProviderSpec]:
|
||||
return [
|
||||
InlineProviderSpec(
|
||||
api=Api.eval,
|
||||
api=Api.evaluation,
|
||||
provider_type="inline::meta-reference",
|
||||
pip_packages=["tree_sitter", "pythainlp", "langdetect", "emoji", "nltk"],
|
||||
module="llama_stack.providers.inline.eval.meta_reference",
|
||||
config_class="llama_stack.providers.inline.eval.meta_reference.MetaReferenceEvalConfig",
|
||||
pip_packages=[
|
||||
"matplotlib",
|
||||
"pillow",
|
||||
"pandas",
|
||||
"scikit-learn",
|
||||
]
|
||||
+ kvstore_dependencies(),
|
||||
module="llama_stack.providers.inline.evaluation.meta_reference",
|
||||
config_class="llama_stack.providers.inline.evaluation.meta_reference.MetaReferenceEvaluationConfig",
|
||||
api_dependencies=[
|
||||
Api.datasetio,
|
||||
Api.datasets,
|
||||
Api.scoring,
|
||||
Api.inference,
|
||||
Api.agents,
|
||||
Api.datasets,
|
||||
Api.datasetio,
|
||||
],
|
||||
),
|
||||
]
|
|
@ -1,49 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List
|
||||
|
||||
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec
|
||||
|
||||
|
||||
def available_providers() -> List[ProviderSpec]:
|
||||
return [
|
||||
InlineProviderSpec(
|
||||
api=Api.scoring,
|
||||
provider_type="inline::basic",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.inline.scoring.basic",
|
||||
config_class="llama_stack.providers.inline.scoring.basic.BasicScoringConfig",
|
||||
api_dependencies=[
|
||||
Api.datasetio,
|
||||
Api.datasets,
|
||||
],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.scoring,
|
||||
provider_type="inline::llm-as-judge",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.inline.scoring.llm_as_judge",
|
||||
config_class="llama_stack.providers.inline.scoring.llm_as_judge.LlmAsJudgeScoringConfig",
|
||||
api_dependencies=[
|
||||
Api.datasetio,
|
||||
Api.datasets,
|
||||
Api.inference,
|
||||
],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.scoring,
|
||||
provider_type="inline::braintrust",
|
||||
pip_packages=["autoevals", "openai"],
|
||||
module="llama_stack.providers.inline.scoring.braintrust",
|
||||
config_class="llama_stack.providers.inline.scoring.braintrust.BraintrustScoringConfig",
|
||||
api_dependencies=[
|
||||
Api.datasetio,
|
||||
Api.datasets,
|
||||
],
|
||||
provider_data_validator="llama_stack.providers.inline.scoring.braintrust.BraintrustProviderDataValidator",
|
||||
),
|
||||
]
|
|
@ -5,14 +5,12 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from llama_stack.apis.common.type_system import (
|
||||
ChatCompletionInputType,
|
||||
CompletionInputType,
|
||||
StringType,
|
||||
)
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
|
||||
|
||||
class ColumnName(Enum):
|
||||
|
@ -75,29 +73,31 @@ VALID_SCHEMAS_FOR_EVAL = [
|
|||
]
|
||||
|
||||
|
||||
def get_valid_schemas(api_str: str):
|
||||
if api_str == Api.scoring.value:
|
||||
return VALID_SCHEMAS_FOR_SCORING
|
||||
elif api_str == Api.eval.value:
|
||||
return VALID_SCHEMAS_FOR_EVAL
|
||||
else:
|
||||
raise ValueError(f"Invalid API string: {api_str}")
|
||||
# TODO(xiyan): add this back
|
||||
|
||||
# def get_valid_schemas(api_str: str):
|
||||
# if api_str == Api.scoring.value:
|
||||
# return VALID_SCHEMAS_FOR_SCORING
|
||||
# elif api_str == Api.eval.value:
|
||||
# return VALID_SCHEMAS_FOR_EVAL
|
||||
# else:
|
||||
# raise ValueError(f"Invalid API string: {api_str}")
|
||||
|
||||
|
||||
def validate_dataset_schema(
|
||||
dataset_schema: Dict[str, Any],
|
||||
expected_schemas: List[Dict[str, Any]],
|
||||
):
|
||||
if dataset_schema not in expected_schemas:
|
||||
raise ValueError(f"Dataset {dataset_schema} does not have a correct input schema in {expected_schemas}")
|
||||
# def validate_dataset_schema(
|
||||
# dataset_schema: Dict[str, Any],
|
||||
# expected_schemas: List[Dict[str, Any]],
|
||||
# ):
|
||||
# if dataset_schema not in expected_schemas:
|
||||
# raise ValueError(f"Dataset {dataset_schema} does not have a correct input schema in {expected_schemas}")
|
||||
|
||||
|
||||
def validate_row_schema(
|
||||
input_row: Dict[str, Any],
|
||||
expected_schemas: List[Dict[str, Any]],
|
||||
):
|
||||
for schema in expected_schemas:
|
||||
if all(key in input_row for key in schema):
|
||||
return
|
||||
# def validate_row_schema(
|
||||
# input_row: Dict[str, Any],
|
||||
# expected_schemas: List[Dict[str, Any]],
|
||||
# ):
|
||||
# for schema in expected_schemas:
|
||||
# if all(key in input_row for key in schema):
|
||||
# return
|
||||
|
||||
raise ValueError(f"Input row {input_row} does not match any of the expected schemas in {expected_schemas}")
|
||||
# raise ValueError(f"Input row {input_row} does not match any of the expected schemas in {expected_schemas}")
|
||||
|
|
|
@ -23,9 +23,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"safety": ["remote::bedrock"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
"eval": ["inline::meta-reference"],
|
||||
"datasetio": ["remote::huggingface", "inline::localfs"],
|
||||
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
||||
"tool_runtime": [
|
||||
"remote::brave-search",
|
||||
"remote::tavily-search",
|
||||
|
|
|
@ -14,15 +14,9 @@ distribution_spec:
|
|||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
eval:
|
||||
- inline::meta-reference
|
||||
datasetio:
|
||||
- remote::huggingface
|
||||
- inline::localfs
|
||||
scoring:
|
||||
- inline::basic
|
||||
- inline::llm-as-judge
|
||||
- inline::braintrust
|
||||
tool_runtime:
|
||||
- remote::brave-search
|
||||
- remote::tavily-search
|
||||
|
|
|
@ -3,10 +3,8 @@ image_name: bedrock
|
|||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
|
@ -42,14 +40,6 @@ providers:
|
|||
service_name: "${env.OTEL_SERVICE_NAME:\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/bedrock/trace_store.db}
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/bedrock}/meta_reference_eval.db
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
|
@ -65,17 +55,6 @@ providers:
|
|||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/bedrock}/localfs_datasetio.db
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
config: {}
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
config: {}
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
|
@ -133,7 +112,6 @@ models:
|
|||
shields: []
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
|
|
|
@ -13,15 +13,9 @@ distribution_spec:
|
|||
- remote::pgvector
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
eval:
|
||||
- inline::meta-reference
|
||||
datasetio:
|
||||
- remote::huggingface
|
||||
- inline::localfs
|
||||
scoring:
|
||||
- inline::basic
|
||||
- inline::llm-as-judge
|
||||
- inline::braintrust
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
tool_runtime:
|
||||
|
|
|
@ -27,9 +27,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"safety": ["inline::llama-guard"],
|
||||
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"eval": ["inline::meta-reference"],
|
||||
"datasetio": ["remote::huggingface", "inline::localfs"],
|
||||
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
"tool_runtime": [
|
||||
"remote::brave-search",
|
||||
|
|
|
@ -3,10 +3,8 @@ image_name: cerebras
|
|||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
|
@ -41,14 +39,6 @@ providers:
|
|||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/cerebras}/agents_store.db
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/cerebras}/meta_reference_eval.db
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
|
@ -64,17 +54,6 @@ providers:
|
|||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/cerebras}/localfs_datasetio.db
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
config: {}
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
config: {}
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:}
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
|
@ -131,7 +110,6 @@ models:
|
|||
shields: []
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
|
|
|
@ -15,15 +15,9 @@ distribution_spec:
|
|||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
eval:
|
||||
- inline::meta-reference
|
||||
datasetio:
|
||||
- remote::huggingface
|
||||
- inline::localfs
|
||||
scoring:
|
||||
- inline::basic
|
||||
- inline::llm-as-judge
|
||||
- inline::braintrust
|
||||
tool_runtime:
|
||||
- remote::brave-search
|
||||
- remote::tavily-search
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue