chore: enable pyupgrade fixes (#1806)

# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
This commit is contained in:
Ihar Hrachyshka 2025-05-01 17:23:50 -04:00 committed by GitHub
parent ffe3d0b2cd
commit 9e6561a1ec
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
319 changed files with 2843 additions and 3033 deletions

View file

@ -4,20 +4,10 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import AsyncIterator
from datetime import datetime
from enum import Enum
from typing import (
Annotated,
Any,
AsyncIterator,
Dict,
List,
Literal,
Optional,
Protocol,
Union,
runtime_checkable,
)
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
from pydantic import BaseModel, ConfigDict, Field
@ -79,8 +69,8 @@ class StepCommon(BaseModel):
turn_id: str
step_id: str
started_at: Optional[datetime] = None
completed_at: Optional[datetime] = None
started_at: datetime | None = None
completed_at: datetime | None = None
class StepType(Enum):
@ -120,8 +110,8 @@ class ToolExecutionStep(StepCommon):
"""
step_type: Literal[StepType.tool_execution.value] = StepType.tool_execution.value
tool_calls: List[ToolCall]
tool_responses: List[ToolResponse]
tool_calls: list[ToolCall]
tool_responses: list[ToolResponse]
@json_schema_type
@ -132,7 +122,7 @@ class ShieldCallStep(StepCommon):
"""
step_type: Literal[StepType.shield_call.value] = StepType.shield_call.value
violation: Optional[SafetyViolation]
violation: SafetyViolation | None
@json_schema_type
@ -150,12 +140,7 @@ class MemoryRetrievalStep(StepCommon):
Step = Annotated[
Union[
InferenceStep,
ToolExecutionStep,
ShieldCallStep,
MemoryRetrievalStep,
],
InferenceStep | ToolExecutionStep | ShieldCallStep | MemoryRetrievalStep,
Field(discriminator="step_type"),
]
@ -166,18 +151,13 @@ class Turn(BaseModel):
turn_id: str
session_id: str
input_messages: List[
Union[
UserMessage,
ToolResponseMessage,
]
]
steps: List[Step]
input_messages: list[UserMessage | ToolResponseMessage]
steps: list[Step]
output_message: CompletionMessage
output_attachments: Optional[List[Attachment]] = Field(default_factory=list)
output_attachments: list[Attachment] | None = Field(default_factory=list)
started_at: datetime
completed_at: Optional[datetime] = None
completed_at: datetime | None = None
@json_schema_type
@ -186,34 +166,31 @@ class Session(BaseModel):
session_id: str
session_name: str
turns: List[Turn]
turns: list[Turn]
started_at: datetime
class AgentToolGroupWithArgs(BaseModel):
name: str
args: Dict[str, Any]
args: dict[str, Any]
AgentToolGroup = Union[
str,
AgentToolGroupWithArgs,
]
AgentToolGroup = str | AgentToolGroupWithArgs
register_schema(AgentToolGroup, name="AgentTool")
class AgentConfigCommon(BaseModel):
sampling_params: Optional[SamplingParams] = Field(default_factory=SamplingParams)
sampling_params: SamplingParams | None = Field(default_factory=SamplingParams)
input_shields: Optional[List[str]] = Field(default_factory=list)
output_shields: Optional[List[str]] = Field(default_factory=list)
toolgroups: Optional[List[AgentToolGroup]] = Field(default_factory=list)
client_tools: Optional[List[ToolDef]] = Field(default_factory=list)
tool_choice: Optional[ToolChoice] = Field(default=None, deprecated="use tool_config instead")
tool_prompt_format: Optional[ToolPromptFormat] = Field(default=None, deprecated="use tool_config instead")
tool_config: Optional[ToolConfig] = Field(default=None)
input_shields: list[str] | None = Field(default_factory=list)
output_shields: list[str] | None = Field(default_factory=list)
toolgroups: list[AgentToolGroup] | None = Field(default_factory=list)
client_tools: list[ToolDef] | None = Field(default_factory=list)
tool_choice: ToolChoice | None = Field(default=None, deprecated="use tool_config instead")
tool_prompt_format: ToolPromptFormat | None = Field(default=None, deprecated="use tool_config instead")
tool_config: ToolConfig | None = Field(default=None)
max_infer_iters: Optional[int] = 10
max_infer_iters: int | None = 10
def model_post_init(self, __context):
if self.tool_config:
@ -243,9 +220,9 @@ class AgentConfig(AgentConfigCommon):
model: str
instructions: str
name: Optional[str] = None
enable_session_persistence: Optional[bool] = False
response_format: Optional[ResponseFormat] = None
name: str | None = None
enable_session_persistence: bool | None = False
response_format: ResponseFormat | None = None
@json_schema_type
@ -257,16 +234,16 @@ class Agent(BaseModel):
@json_schema_type
class ListAgentsResponse(BaseModel):
data: List[Agent]
data: list[Agent]
@json_schema_type
class ListAgentSessionsResponse(BaseModel):
data: List[Session]
data: list[Session]
class AgentConfigOverridablePerTurn(AgentConfigCommon):
instructions: Optional[str] = None
instructions: str | None = None
class AgentTurnResponseEventType(Enum):
@ -284,7 +261,7 @@ class AgentTurnResponseStepStartPayload(BaseModel):
event_type: Literal[AgentTurnResponseEventType.step_start.value] = AgentTurnResponseEventType.step_start.value
step_type: StepType
step_id: str
metadata: Optional[Dict[str, Any]] = Field(default_factory=dict)
metadata: dict[str, Any] | None = Field(default_factory=dict)
@json_schema_type
@ -327,14 +304,12 @@ class AgentTurnResponseTurnAwaitingInputPayload(BaseModel):
AgentTurnResponseEventPayload = Annotated[
Union[
AgentTurnResponseStepStartPayload,
AgentTurnResponseStepProgressPayload,
AgentTurnResponseStepCompletePayload,
AgentTurnResponseTurnStartPayload,
AgentTurnResponseTurnCompletePayload,
AgentTurnResponseTurnAwaitingInputPayload,
],
AgentTurnResponseStepStartPayload
| AgentTurnResponseStepProgressPayload
| AgentTurnResponseStepCompletePayload
| AgentTurnResponseTurnStartPayload
| AgentTurnResponseTurnCompletePayload
| AgentTurnResponseTurnAwaitingInputPayload,
Field(discriminator="event_type"),
]
register_schema(AgentTurnResponseEventPayload, name="AgentTurnResponseEventPayload")
@ -363,18 +338,13 @@ class AgentTurnCreateRequest(AgentConfigOverridablePerTurn):
# TODO: figure out how we can simplify this and make why
# ToolResponseMessage needs to be here (it is function call
# execution from outside the system)
messages: List[
Union[
UserMessage,
ToolResponseMessage,
]
]
messages: list[UserMessage | ToolResponseMessage]
documents: Optional[List[Document]] = None
toolgroups: Optional[List[AgentToolGroup]] = None
documents: list[Document] | None = None
toolgroups: list[AgentToolGroup] | None = None
stream: Optional[bool] = False
tool_config: Optional[ToolConfig] = None
stream: bool | None = False
tool_config: ToolConfig | None = None
@json_schema_type
@ -382,8 +352,8 @@ class AgentTurnResumeRequest(BaseModel):
agent_id: str
session_id: str
turn_id: str
tool_responses: List[ToolResponse]
stream: Optional[bool] = False
tool_responses: list[ToolResponse]
stream: bool | None = False
@json_schema_type
@ -429,17 +399,12 @@ class Agents(Protocol):
self,
agent_id: str,
session_id: str,
messages: List[
Union[
UserMessage,
ToolResponseMessage,
]
],
stream: Optional[bool] = False,
documents: Optional[List[Document]] = None,
toolgroups: Optional[List[AgentToolGroup]] = None,
tool_config: Optional[ToolConfig] = None,
) -> Union[Turn, AsyncIterator[AgentTurnResponseStreamChunk]]:
messages: list[UserMessage | ToolResponseMessage],
stream: bool | None = False,
documents: list[Document] | None = None,
toolgroups: list[AgentToolGroup] | None = None,
tool_config: ToolConfig | None = None,
) -> Turn | AsyncIterator[AgentTurnResponseStreamChunk]:
"""Create a new turn for an agent.
:param agent_id: The ID of the agent to create the turn for.
@ -463,9 +428,9 @@ class Agents(Protocol):
agent_id: str,
session_id: str,
turn_id: str,
tool_responses: List[ToolResponse],
stream: Optional[bool] = False,
) -> Union[Turn, AsyncIterator[AgentTurnResponseStreamChunk]]:
tool_responses: list[ToolResponse],
stream: bool | None = False,
) -> Turn | AsyncIterator[AgentTurnResponseStreamChunk]:
"""Resume an agent turn with executed tool call responses.
When a Turn has the status `awaiting_input` due to pending input from client side tool calls, this endpoint can be used to submit the outputs from the tool calls once they are ready.
@ -538,7 +503,7 @@ class Agents(Protocol):
self,
session_id: str,
agent_id: str,
turn_ids: Optional[List[str]] = None,
turn_ids: list[str] | None = None,
) -> Session:
"""Retrieve an agent session by its ID.
@ -623,14 +588,14 @@ class Agents(Protocol):
@webmethod(route="/openai/v1/responses", method="POST")
async def create_openai_response(
self,
input: Union[str, List[OpenAIResponseInputMessage]],
input: str | list[OpenAIResponseInputMessage],
model: str,
previous_response_id: Optional[str] = None,
store: Optional[bool] = True,
stream: Optional[bool] = False,
temperature: Optional[float] = None,
tools: Optional[List[OpenAIResponseInputTool]] = None,
) -> Union[OpenAIResponseObject, AsyncIterator[OpenAIResponseObjectStream]]:
previous_response_id: str | None = None,
store: bool | None = True,
stream: bool | None = False,
temperature: float | None = None,
tools: list[OpenAIResponseInputTool] | None = None,
) -> OpenAIResponseObject | AsyncIterator[OpenAIResponseObjectStream]:
"""Create a new OpenAI response.
:param input: Input message(s) to create the response.

View file

@ -4,10 +4,9 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List, Literal, Optional, Union
from typing import Annotated, Literal
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from llama_stack.schema_utils import json_schema_type, register_schema
@ -25,7 +24,7 @@ class OpenAIResponseOutputMessageContentOutputText(BaseModel):
OpenAIResponseOutputMessageContent = Annotated[
Union[OpenAIResponseOutputMessageContentOutputText,],
OpenAIResponseOutputMessageContentOutputText,
Field(discriminator="type"),
]
register_schema(OpenAIResponseOutputMessageContent, name="OpenAIResponseOutputMessageContent")
@ -34,7 +33,7 @@ register_schema(OpenAIResponseOutputMessageContent, name="OpenAIResponseOutputMe
@json_schema_type
class OpenAIResponseOutputMessage(BaseModel):
id: str
content: List[OpenAIResponseOutputMessageContent]
content: list[OpenAIResponseOutputMessageContent]
role: Literal["assistant"] = "assistant"
status: str
type: Literal["message"] = "message"
@ -48,10 +47,7 @@ class OpenAIResponseOutputMessageWebSearchToolCall(BaseModel):
OpenAIResponseOutput = Annotated[
Union[
OpenAIResponseOutputMessage,
OpenAIResponseOutputMessageWebSearchToolCall,
],
OpenAIResponseOutputMessage | OpenAIResponseOutputMessageWebSearchToolCall,
Field(discriminator="type"),
]
register_schema(OpenAIResponseOutput, name="OpenAIResponseOutput")
@ -60,18 +56,18 @@ register_schema(OpenAIResponseOutput, name="OpenAIResponseOutput")
@json_schema_type
class OpenAIResponseObject(BaseModel):
created_at: int
error: Optional[OpenAIResponseError] = None
error: OpenAIResponseError | None = None
id: str
model: str
object: Literal["response"] = "response"
output: List[OpenAIResponseOutput]
output: list[OpenAIResponseOutput]
parallel_tool_calls: bool = False
previous_response_id: Optional[str] = None
previous_response_id: str | None = None
status: str
temperature: Optional[float] = None
top_p: Optional[float] = None
truncation: Optional[str] = None
user: Optional[str] = None
temperature: float | None = None
top_p: float | None = None
truncation: str | None = None
user: str | None = None
@json_schema_type
@ -87,10 +83,7 @@ class OpenAIResponseObjectStreamResponseCompleted(BaseModel):
OpenAIResponseObjectStream = Annotated[
Union[
OpenAIResponseObjectStreamResponseCreated,
OpenAIResponseObjectStreamResponseCompleted,
],
OpenAIResponseObjectStreamResponseCreated | OpenAIResponseObjectStreamResponseCompleted,
Field(discriminator="type"),
]
register_schema(OpenAIResponseObjectStream, name="OpenAIResponseObjectStream")
@ -107,12 +100,12 @@ class OpenAIResponseInputMessageContentImage(BaseModel):
detail: Literal["low"] | Literal["high"] | Literal["auto"] = "auto"
type: Literal["input_image"] = "input_image"
# TODO: handle file_id
image_url: Optional[str] = None
image_url: str | None = None
# TODO: handle file content types
OpenAIResponseInputMessageContent = Annotated[
Union[OpenAIResponseInputMessageContentText, OpenAIResponseInputMessageContentImage],
OpenAIResponseInputMessageContentText | OpenAIResponseInputMessageContentImage,
Field(discriminator="type"),
]
register_schema(OpenAIResponseInputMessageContent, name="OpenAIResponseInputMessageContent")
@ -120,21 +113,21 @@ register_schema(OpenAIResponseInputMessageContent, name="OpenAIResponseInputMess
@json_schema_type
class OpenAIResponseInputMessage(BaseModel):
content: Union[str, List[OpenAIResponseInputMessageContent]]
content: str | list[OpenAIResponseInputMessageContent]
role: Literal["system"] | Literal["developer"] | Literal["user"] | Literal["assistant"]
type: Optional[Literal["message"]] = "message"
type: Literal["message"] | None = "message"
@json_schema_type
class OpenAIResponseInputToolWebSearch(BaseModel):
type: Literal["web_search"] | Literal["web_search_preview_2025_03_11"] = "web_search"
# TODO: actually use search_context_size somewhere...
search_context_size: Optional[str] = Field(default="medium", pattern="^low|medium|high$")
search_context_size: str | None = Field(default="medium", pattern="^low|medium|high$")
# TODO: add user_location
OpenAIResponseInputTool = Annotated[
Union[OpenAIResponseInputToolWebSearch,],
OpenAIResponseInputToolWebSearch,
Field(discriminator="type"),
]
register_schema(OpenAIResponseInputTool, name="OpenAIResponseInputTool")

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List, Optional, Protocol, runtime_checkable
from typing import Protocol, runtime_checkable
from llama_stack.apis.common.job_types import Job
from llama_stack.apis.inference import (
@ -34,22 +34,22 @@ class BatchInference(Protocol):
async def completion(
self,
model: str,
content_batch: List[InterleavedContent],
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
logprobs: Optional[LogProbConfig] = None,
content_batch: list[InterleavedContent],
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
logprobs: LogProbConfig | None = None,
) -> Job: ...
@webmethod(route="/batch-inference/chat-completion", method="POST")
async def chat_completion(
self,
model: str,
messages_batch: List[List[Message]],
sampling_params: Optional[SamplingParams] = None,
messages_batch: list[list[Message]],
sampling_params: SamplingParams | None = None,
# zero-shot tool definitions as input to the model
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,
response_format: Optional[ResponseFormat] = None,
logprobs: Optional[LogProbConfig] = None,
tools: list[ToolDefinition] | None = None,
tool_choice: ToolChoice | None = ToolChoice.auto,
tool_prompt_format: ToolPromptFormat | None = None,
response_format: ResponseFormat | None = None,
logprobs: LogProbConfig | None = None,
) -> Job: ...

View file

@ -3,7 +3,7 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Literal, Optional, Protocol, runtime_checkable
from typing import Any, Literal, Protocol, runtime_checkable
from pydantic import BaseModel, Field
@ -13,8 +13,8 @@ from llama_stack.schema_utils import json_schema_type, webmethod
class CommonBenchmarkFields(BaseModel):
dataset_id: str
scoring_functions: List[str]
metadata: Dict[str, Any] = Field(
scoring_functions: list[str]
metadata: dict[str, Any] = Field(
default_factory=dict,
description="Metadata for this evaluation task",
)
@ -35,12 +35,12 @@ class Benchmark(CommonBenchmarkFields, Resource):
class BenchmarkInput(CommonBenchmarkFields, BaseModel):
benchmark_id: str
provider_id: Optional[str] = None
provider_benchmark_id: Optional[str] = None
provider_id: str | None = None
provider_benchmark_id: str | None = None
class ListBenchmarksResponse(BaseModel):
data: List[Benchmark]
data: list[Benchmark]
@runtime_checkable
@ -59,8 +59,8 @@ class Benchmarks(Protocol):
self,
benchmark_id: str,
dataset_id: str,
scoring_functions: List[str],
provider_benchmark_id: Optional[str] = None,
provider_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
scoring_functions: list[str],
provider_benchmark_id: str | None = None,
provider_id: str | None = None,
metadata: dict[str, Any] | None = None,
) -> None: ...

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from enum import Enum
from typing import Annotated, List, Literal, Optional, Union
from typing import Annotated, Literal
from pydantic import BaseModel, Field, model_validator
@ -26,9 +26,9 @@ class _URLOrData(BaseModel):
:param data: base64 encoded image data as string
"""
url: Optional[URL] = None
url: URL | None = None
# data is a base64 encoded string, hint with contentEncoding=base64
data: Optional[str] = Field(contentEncoding="base64", default=None)
data: str | None = Field(contentEncoding="base64", default=None)
@model_validator(mode="before")
@classmethod
@ -64,13 +64,13 @@ class TextContentItem(BaseModel):
# other modalities can be added here
InterleavedContentItem = Annotated[
Union[ImageContentItem, TextContentItem],
ImageContentItem | TextContentItem,
Field(discriminator="type"),
]
register_schema(InterleavedContentItem, name="InterleavedContentItem")
# accept a single "str" as a special case since it is common
InterleavedContent = Union[str, InterleavedContentItem, List[InterleavedContentItem]]
InterleavedContent = str | InterleavedContentItem | list[InterleavedContentItem]
register_schema(InterleavedContent, name="InterleavedContent")
@ -100,13 +100,13 @@ class ToolCallDelta(BaseModel):
# you either send an in-progress tool call so the client can stream a long
# code generation or you send the final parsed tool call at the end of the
# stream
tool_call: Union[str, ToolCall]
tool_call: str | ToolCall
parse_status: ToolCallParseStatus
# streaming completions send a stream of ContentDeltas
ContentDelta = Annotated[
Union[TextDelta, ImageDelta, ToolCallDelta],
TextDelta | ImageDelta | ToolCallDelta,
Field(discriminator="type"),
]
register_schema(ContentDelta, name="ContentDelta")

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, Optional
from typing import Any
from pydantic import BaseModel
@ -25,6 +25,6 @@ class RestAPIMethod(Enum):
class RestAPIExecutionConfig(BaseModel):
url: URL
method: RestAPIMethod
params: Optional[Dict[str, Any]] = None
headers: Optional[Dict[str, Any]] = None
body: Optional[Dict[str, Any]] = None
params: dict[str, Any] | None = None
headers: dict[str, Any] | None = None
body: dict[str, Any] | None = None

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List
from typing import Any
from pydantic import BaseModel
@ -19,5 +19,5 @@ class PaginatedResponse(BaseModel):
:param has_more: Whether there are more items available after this set
"""
data: List[Dict[str, Any]]
data: list[dict[str, Any]]
has_more: bool

View file

@ -5,7 +5,6 @@
# the root directory of this source tree.
from datetime import datetime
from typing import Optional
from pydantic import BaseModel
@ -27,4 +26,4 @@ class Checkpoint(BaseModel):
epoch: int
post_training_job_id: str
path: str
training_metrics: Optional[PostTrainingMetric] = None
training_metrics: PostTrainingMetric | None = None

View file

@ -4,10 +4,9 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Literal, Union
from typing import Annotated, Literal
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from llama_stack.schema_utils import json_schema_type, register_schema
@ -73,18 +72,16 @@ class DialogType(BaseModel):
ParamType = Annotated[
Union[
StringType,
NumberType,
BooleanType,
ArrayType,
ObjectType,
JsonType,
UnionType,
ChatCompletionInputType,
CompletionInputType,
AgentTurnInputType,
],
StringType
| NumberType
| BooleanType
| ArrayType
| ObjectType
| JsonType
| UnionType
| ChatCompletionInputType
| CompletionInputType
| AgentTurnInputType,
Field(discriminator="type"),
]
register_schema(ParamType, name="ParamType")

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
from typing import Any, Protocol, runtime_checkable
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.apis.datasets import Dataset
@ -24,8 +24,8 @@ class DatasetIO(Protocol):
async def iterrows(
self,
dataset_id: str,
start_index: Optional[int] = None,
limit: Optional[int] = None,
start_index: int | None = None,
limit: int | None = None,
) -> PaginatedResponse:
"""Get a paginated list of rows from a dataset.
@ -44,4 +44,4 @@ class DatasetIO(Protocol):
...
@webmethod(route="/datasetio/append-rows/{dataset_id:path}", method="POST")
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None: ...
async def append_rows(self, dataset_id: str, rows: list[dict[str, Any]]) -> None: ...

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from enum import Enum
from typing import Annotated, Any, Dict, List, Literal, Optional, Protocol, Union
from typing import Annotated, Any, Literal, Protocol
from pydantic import BaseModel, Field
@ -81,11 +81,11 @@ class RowsDataSource(BaseModel):
"""
type: Literal["rows"] = "rows"
rows: List[Dict[str, Any]]
rows: list[dict[str, Any]]
DataSource = Annotated[
Union[URIDataSource, RowsDataSource],
URIDataSource | RowsDataSource,
Field(discriminator="type"),
]
register_schema(DataSource, name="DataSource")
@ -98,7 +98,7 @@ class CommonDatasetFields(BaseModel):
purpose: DatasetPurpose
source: DataSource
metadata: Dict[str, Any] = Field(
metadata: dict[str, Any] = Field(
default_factory=dict,
description="Any additional metadata for this dataset",
)
@ -122,7 +122,7 @@ class DatasetInput(CommonDatasetFields, BaseModel):
class ListDatasetsResponse(BaseModel):
data: List[Dataset]
data: list[Dataset]
class Datasets(Protocol):
@ -131,8 +131,8 @@ class Datasets(Protocol):
self,
purpose: DatasetPurpose,
source: DataSource,
metadata: Optional[Dict[str, Any]] = None,
dataset_id: Optional[str] = None,
metadata: dict[str, Any] | None = None,
dataset_id: str | None = None,
) -> Dataset:
"""
Register a new dataset.

View file

@ -5,7 +5,6 @@
# the root directory of this source tree.
from enum import Enum
from typing import Optional
from pydantic import BaseModel
@ -54,4 +53,4 @@ class Error(BaseModel):
status: int
title: str
detail: str
instance: Optional[str] = None
instance: str | None = None

View file

@ -4,10 +4,9 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Literal, Optional, Protocol, Union
from typing import Annotated, Any, Literal, Protocol
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from llama_stack.apis.agents import AgentConfig
from llama_stack.apis.common.job_types import Job
@ -29,7 +28,7 @@ class ModelCandidate(BaseModel):
type: Literal["model"] = "model"
model: str
sampling_params: SamplingParams
system_message: Optional[SystemMessage] = None
system_message: SystemMessage | None = None
@json_schema_type
@ -43,7 +42,7 @@ class AgentCandidate(BaseModel):
config: AgentConfig
EvalCandidate = Annotated[Union[ModelCandidate, AgentCandidate], Field(discriminator="type")]
EvalCandidate = Annotated[ModelCandidate | AgentCandidate, Field(discriminator="type")]
register_schema(EvalCandidate, name="EvalCandidate")
@ -57,11 +56,11 @@ class BenchmarkConfig(BaseModel):
"""
eval_candidate: EvalCandidate
scoring_params: Dict[str, ScoringFnParams] = Field(
scoring_params: dict[str, ScoringFnParams] = Field(
description="Map between scoring function id and parameters for each scoring function you want to run",
default_factory=dict,
)
num_examples: Optional[int] = Field(
num_examples: int | None = Field(
description="Number of examples to evaluate (useful for testing), if not provided, all examples in the dataset will be evaluated",
default=None,
)
@ -76,9 +75,9 @@ class EvaluateResponse(BaseModel):
:param scores: The scores from the evaluation.
"""
generations: List[Dict[str, Any]]
generations: list[dict[str, Any]]
# each key in the dict is a scoring function name
scores: Dict[str, ScoringResult]
scores: dict[str, ScoringResult]
class Eval(Protocol):
@ -101,8 +100,8 @@ class Eval(Protocol):
async def evaluate_rows(
self,
benchmark_id: str,
input_rows: List[Dict[str, Any]],
scoring_functions: List[str],
input_rows: list[dict[str, Any]],
scoring_functions: list[str],
benchmark_config: BenchmarkConfig,
) -> EvaluateResponse:
"""Evaluate a list of rows on a benchmark.

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List, Optional, Protocol, runtime_checkable
from typing import Protocol, runtime_checkable
from pydantic import BaseModel
@ -42,7 +42,7 @@ class ListBucketResponse(BaseModel):
:param data: List of FileResponse entries
"""
data: List[BucketResponse]
data: list[BucketResponse]
@json_schema_type
@ -74,7 +74,7 @@ class ListFileResponse(BaseModel):
:param data: List of FileResponse entries
"""
data: List[FileResponse]
data: list[FileResponse]
@runtime_checkable
@ -102,7 +102,7 @@ class Files(Protocol):
async def upload_content_to_session(
self,
upload_id: str,
) -> Optional[FileResponse]:
) -> FileResponse | None:
"""
Upload file content to an existing upload session.
On the server, request body will have the raw bytes that are uploaded.

View file

@ -4,21 +4,18 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import AsyncIterator
from enum import Enum
from typing import (
Annotated,
Any,
AsyncIterator,
Dict,
List,
Literal,
Optional,
Protocol,
Union,
runtime_checkable,
)
from pydantic import BaseModel, Field, field_validator
from typing_extensions import Annotated, TypedDict
from typing_extensions import TypedDict
from llama_stack.apis.common.content_types import ContentDelta, InterleavedContent, InterleavedContentItem
from llama_stack.apis.models import Model
@ -47,8 +44,8 @@ class GreedySamplingStrategy(BaseModel):
@json_schema_type
class TopPSamplingStrategy(BaseModel):
type: Literal["top_p"] = "top_p"
temperature: Optional[float] = Field(..., gt=0.0)
top_p: Optional[float] = 0.95
temperature: float | None = Field(..., gt=0.0)
top_p: float | None = 0.95
@json_schema_type
@ -58,7 +55,7 @@ class TopKSamplingStrategy(BaseModel):
SamplingStrategy = Annotated[
Union[GreedySamplingStrategy, TopPSamplingStrategy, TopKSamplingStrategy],
GreedySamplingStrategy | TopPSamplingStrategy | TopKSamplingStrategy,
Field(discriminator="type"),
]
register_schema(SamplingStrategy, name="SamplingStrategy")
@ -79,9 +76,9 @@ class SamplingParams(BaseModel):
strategy: SamplingStrategy = Field(default_factory=GreedySamplingStrategy)
max_tokens: Optional[int] = 0
repetition_penalty: Optional[float] = 1.0
stop: Optional[List[str]] = None
max_tokens: int | None = 0
repetition_penalty: float | None = 1.0
stop: list[str] | None = None
class LogProbConfig(BaseModel):
@ -90,7 +87,7 @@ class LogProbConfig(BaseModel):
:param top_k: How many tokens (for each position) to return log probabilities for.
"""
top_k: Optional[int] = 0
top_k: int | None = 0
class QuantizationType(Enum):
@ -125,11 +122,11 @@ class Int4QuantizationConfig(BaseModel):
"""
type: Literal["int4_mixed"] = "int4_mixed"
scheme: Optional[str] = "int4_weight_int8_dynamic_activation"
scheme: str | None = "int4_weight_int8_dynamic_activation"
QuantizationConfig = Annotated[
Union[Bf16QuantizationConfig, Fp8QuantizationConfig, Int4QuantizationConfig],
Bf16QuantizationConfig | Fp8QuantizationConfig | Int4QuantizationConfig,
Field(discriminator="type"),
]
@ -145,7 +142,7 @@ class UserMessage(BaseModel):
role: Literal["user"] = "user"
content: InterleavedContent
context: Optional[InterleavedContent] = None
context: InterleavedContent | None = None
@json_schema_type
@ -190,16 +187,11 @@ class CompletionMessage(BaseModel):
role: Literal["assistant"] = "assistant"
content: InterleavedContent
stop_reason: StopReason
tool_calls: Optional[List[ToolCall]] = Field(default_factory=list)
tool_calls: list[ToolCall] | None = Field(default_factory=list)
Message = Annotated[
Union[
UserMessage,
SystemMessage,
ToolResponseMessage,
CompletionMessage,
],
UserMessage | SystemMessage | ToolResponseMessage | CompletionMessage,
Field(discriminator="role"),
]
register_schema(Message, name="Message")
@ -208,9 +200,9 @@ register_schema(Message, name="Message")
@json_schema_type
class ToolResponse(BaseModel):
call_id: str
tool_name: Union[BuiltinTool, str]
tool_name: BuiltinTool | str
content: InterleavedContent
metadata: Optional[Dict[str, Any]] = None
metadata: dict[str, Any] | None = None
@field_validator("tool_name", mode="before")
@classmethod
@ -243,7 +235,7 @@ class TokenLogProbs(BaseModel):
:param logprobs_by_token: Dictionary mapping tokens to their log probabilities
"""
logprobs_by_token: Dict[str, float]
logprobs_by_token: dict[str, float]
class ChatCompletionResponseEventType(Enum):
@ -271,8 +263,8 @@ class ChatCompletionResponseEvent(BaseModel):
event_type: ChatCompletionResponseEventType
delta: ContentDelta
logprobs: Optional[List[TokenLogProbs]] = None
stop_reason: Optional[StopReason] = None
logprobs: list[TokenLogProbs] | None = None
stop_reason: StopReason | None = None
class ResponseFormatType(Enum):
@ -295,7 +287,7 @@ class JsonSchemaResponseFormat(BaseModel):
"""
type: Literal[ResponseFormatType.json_schema.value] = ResponseFormatType.json_schema.value
json_schema: Dict[str, Any]
json_schema: dict[str, Any]
@json_schema_type
@ -307,11 +299,11 @@ class GrammarResponseFormat(BaseModel):
"""
type: Literal[ResponseFormatType.grammar.value] = ResponseFormatType.grammar.value
bnf: Dict[str, Any]
bnf: dict[str, Any]
ResponseFormat = Annotated[
Union[JsonSchemaResponseFormat, GrammarResponseFormat],
JsonSchemaResponseFormat | GrammarResponseFormat,
Field(discriminator="type"),
]
register_schema(ResponseFormat, name="ResponseFormat")
@ -321,10 +313,10 @@ register_schema(ResponseFormat, name="ResponseFormat")
class CompletionRequest(BaseModel):
model: str
content: InterleavedContent
sampling_params: Optional[SamplingParams] = Field(default_factory=SamplingParams)
response_format: Optional[ResponseFormat] = None
stream: Optional[bool] = False
logprobs: Optional[LogProbConfig] = None
sampling_params: SamplingParams | None = Field(default_factory=SamplingParams)
response_format: ResponseFormat | None = None
stream: bool | None = False
logprobs: LogProbConfig | None = None
@json_schema_type
@ -338,7 +330,7 @@ class CompletionResponse(MetricResponseMixin):
content: str
stop_reason: StopReason
logprobs: Optional[List[TokenLogProbs]] = None
logprobs: list[TokenLogProbs] | None = None
@json_schema_type
@ -351,8 +343,8 @@ class CompletionResponseStreamChunk(MetricResponseMixin):
"""
delta: str
stop_reason: Optional[StopReason] = None
logprobs: Optional[List[TokenLogProbs]] = None
stop_reason: StopReason | None = None
logprobs: list[TokenLogProbs] | None = None
class SystemMessageBehavior(Enum):
@ -383,9 +375,9 @@ class ToolConfig(BaseModel):
'{{function_definitions}}' to indicate where the function definitions should be inserted.
"""
tool_choice: Optional[ToolChoice | str] = Field(default=ToolChoice.auto)
tool_prompt_format: Optional[ToolPromptFormat] = Field(default=None)
system_message_behavior: Optional[SystemMessageBehavior] = Field(default=SystemMessageBehavior.append)
tool_choice: ToolChoice | str | None = Field(default=ToolChoice.auto)
tool_prompt_format: ToolPromptFormat | None = Field(default=None)
system_message_behavior: SystemMessageBehavior | None = Field(default=SystemMessageBehavior.append)
def model_post_init(self, __context: Any) -> None:
if isinstance(self.tool_choice, str):
@ -399,15 +391,15 @@ class ToolConfig(BaseModel):
@json_schema_type
class ChatCompletionRequest(BaseModel):
model: str
messages: List[Message]
sampling_params: Optional[SamplingParams] = Field(default_factory=SamplingParams)
messages: list[Message]
sampling_params: SamplingParams | None = Field(default_factory=SamplingParams)
tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
tool_config: Optional[ToolConfig] = Field(default_factory=ToolConfig)
tools: list[ToolDefinition] | None = Field(default_factory=list)
tool_config: ToolConfig | None = Field(default_factory=ToolConfig)
response_format: Optional[ResponseFormat] = None
stream: Optional[bool] = False
logprobs: Optional[LogProbConfig] = None
response_format: ResponseFormat | None = None
stream: bool | None = False
logprobs: LogProbConfig | None = None
@json_schema_type
@ -429,7 +421,7 @@ class ChatCompletionResponse(MetricResponseMixin):
"""
completion_message: CompletionMessage
logprobs: Optional[List[TokenLogProbs]] = None
logprobs: list[TokenLogProbs] | None = None
@json_schema_type
@ -439,7 +431,7 @@ class EmbeddingsResponse(BaseModel):
:param embeddings: List of embedding vectors, one per input content. Each embedding is a list of floats. The dimensionality of the embedding is model-specific; you can check model metadata using /models/{model_id}
"""
embeddings: List[List[float]]
embeddings: list[list[float]]
@json_schema_type
@ -451,7 +443,7 @@ class OpenAIChatCompletionContentPartTextParam(BaseModel):
@json_schema_type
class OpenAIImageURL(BaseModel):
url: str
detail: Optional[str] = None
detail: str | None = None
@json_schema_type
@ -461,16 +453,13 @@ class OpenAIChatCompletionContentPartImageParam(BaseModel):
OpenAIChatCompletionContentPartParam = Annotated[
Union[
OpenAIChatCompletionContentPartTextParam,
OpenAIChatCompletionContentPartImageParam,
],
OpenAIChatCompletionContentPartTextParam | OpenAIChatCompletionContentPartImageParam,
Field(discriminator="type"),
]
register_schema(OpenAIChatCompletionContentPartParam, name="OpenAIChatCompletionContentPartParam")
OpenAIChatCompletionMessageContent = Union[str, List[OpenAIChatCompletionContentPartParam]]
OpenAIChatCompletionMessageContent = str | list[OpenAIChatCompletionContentPartParam]
@json_schema_type
@ -484,7 +473,7 @@ class OpenAIUserMessageParam(BaseModel):
role: Literal["user"] = "user"
content: OpenAIChatCompletionMessageContent
name: Optional[str] = None
name: str | None = None
@json_schema_type
@ -498,21 +487,21 @@ class OpenAISystemMessageParam(BaseModel):
role: Literal["system"] = "system"
content: OpenAIChatCompletionMessageContent
name: Optional[str] = None
name: str | None = None
@json_schema_type
class OpenAIChatCompletionToolCallFunction(BaseModel):
name: Optional[str] = None
arguments: Optional[str] = None
name: str | None = None
arguments: str | None = None
@json_schema_type
class OpenAIChatCompletionToolCall(BaseModel):
index: Optional[int] = None
id: Optional[str] = None
index: int | None = None
id: str | None = None
type: Literal["function"] = "function"
function: Optional[OpenAIChatCompletionToolCallFunction] = None
function: OpenAIChatCompletionToolCallFunction | None = None
@json_schema_type
@ -526,9 +515,9 @@ class OpenAIAssistantMessageParam(BaseModel):
"""
role: Literal["assistant"] = "assistant"
content: Optional[OpenAIChatCompletionMessageContent] = None
name: Optional[str] = None
tool_calls: Optional[List[OpenAIChatCompletionToolCall]] = None
content: OpenAIChatCompletionMessageContent | None = None
name: str | None = None
tool_calls: list[OpenAIChatCompletionToolCall] | None = None
@json_schema_type
@ -556,17 +545,15 @@ class OpenAIDeveloperMessageParam(BaseModel):
role: Literal["developer"] = "developer"
content: OpenAIChatCompletionMessageContent
name: Optional[str] = None
name: str | None = None
OpenAIMessageParam = Annotated[
Union[
OpenAIUserMessageParam,
OpenAISystemMessageParam,
OpenAIAssistantMessageParam,
OpenAIToolMessageParam,
OpenAIDeveloperMessageParam,
],
OpenAIUserMessageParam
| OpenAISystemMessageParam
| OpenAIAssistantMessageParam
| OpenAIToolMessageParam
| OpenAIDeveloperMessageParam,
Field(discriminator="role"),
]
register_schema(OpenAIMessageParam, name="OpenAIMessageParam")
@ -580,14 +567,14 @@ class OpenAIResponseFormatText(BaseModel):
@json_schema_type
class OpenAIJSONSchema(TypedDict, total=False):
name: str
description: Optional[str] = None
strict: Optional[bool] = None
description: str | None = None
strict: bool | None = None
# Pydantic BaseModel cannot be used with a schema param, since it already
# has one. And, we don't want to alias here because then have to handle
# that alias when converting to OpenAI params. So, to support schema,
# we use a TypedDict.
schema: Optional[Dict[str, Any]] = None
schema: dict[str, Any] | None = None
@json_schema_type
@ -602,11 +589,7 @@ class OpenAIResponseFormatJSONObject(BaseModel):
OpenAIResponseFormatParam = Annotated[
Union[
OpenAIResponseFormatText,
OpenAIResponseFormatJSONSchema,
OpenAIResponseFormatJSONObject,
],
OpenAIResponseFormatText | OpenAIResponseFormatJSONSchema | OpenAIResponseFormatJSONObject,
Field(discriminator="type"),
]
register_schema(OpenAIResponseFormatParam, name="OpenAIResponseFormatParam")
@ -622,7 +605,7 @@ class OpenAITopLogProb(BaseModel):
"""
token: str
bytes: Optional[List[int]] = None
bytes: list[int] | None = None
logprob: float
@ -637,9 +620,9 @@ class OpenAITokenLogProb(BaseModel):
"""
token: str
bytes: Optional[List[int]] = None
bytes: list[int] | None = None
logprob: float
top_logprobs: List[OpenAITopLogProb]
top_logprobs: list[OpenAITopLogProb]
@json_schema_type
@ -650,8 +633,8 @@ class OpenAIChoiceLogprobs(BaseModel):
:param refusal: (Optional) The log probabilities for the tokens in the message
"""
content: Optional[List[OpenAITokenLogProb]] = None
refusal: Optional[List[OpenAITokenLogProb]] = None
content: list[OpenAITokenLogProb] | None = None
refusal: list[OpenAITokenLogProb] | None = None
@json_schema_type
@ -664,10 +647,10 @@ class OpenAIChoiceDelta(BaseModel):
:param tool_calls: (Optional) The tool calls of the delta
"""
content: Optional[str] = None
refusal: Optional[str] = None
role: Optional[str] = None
tool_calls: Optional[List[OpenAIChatCompletionToolCall]] = None
content: str | None = None
refusal: str | None = None
role: str | None = None
tool_calls: list[OpenAIChatCompletionToolCall] | None = None
@json_schema_type
@ -683,7 +666,7 @@ class OpenAIChunkChoice(BaseModel):
delta: OpenAIChoiceDelta
finish_reason: str
index: int
logprobs: Optional[OpenAIChoiceLogprobs] = None
logprobs: OpenAIChoiceLogprobs | None = None
@json_schema_type
@ -699,7 +682,7 @@ class OpenAIChoice(BaseModel):
message: OpenAIMessageParam
finish_reason: str
index: int
logprobs: Optional[OpenAIChoiceLogprobs] = None
logprobs: OpenAIChoiceLogprobs | None = None
@json_schema_type
@ -714,7 +697,7 @@ class OpenAIChatCompletion(BaseModel):
"""
id: str
choices: List[OpenAIChoice]
choices: list[OpenAIChoice]
object: Literal["chat.completion"] = "chat.completion"
created: int
model: str
@ -732,7 +715,7 @@ class OpenAIChatCompletionChunk(BaseModel):
"""
id: str
choices: List[OpenAIChunkChoice]
choices: list[OpenAIChunkChoice]
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
created: int
model: str
@ -748,10 +731,10 @@ class OpenAICompletionLogprobs(BaseModel):
:top_logprobs: (Optional) The top log probabilities for the tokens
"""
text_offset: Optional[List[int]] = None
token_logprobs: Optional[List[float]] = None
tokens: Optional[List[str]] = None
top_logprobs: Optional[List[Dict[str, float]]] = None
text_offset: list[int] | None = None
token_logprobs: list[float] | None = None
tokens: list[str] | None = None
top_logprobs: list[dict[str, float]] | None = None
@json_schema_type
@ -767,7 +750,7 @@ class OpenAICompletionChoice(BaseModel):
finish_reason: str
text: str
index: int
logprobs: Optional[OpenAIChoiceLogprobs] = None
logprobs: OpenAIChoiceLogprobs | None = None
@json_schema_type
@ -782,7 +765,7 @@ class OpenAICompletion(BaseModel):
"""
id: str
choices: List[OpenAICompletionChoice]
choices: list[OpenAICompletionChoice]
created: int
model: str
object: Literal["text_completion"] = "text_completion"
@ -818,12 +801,12 @@ class EmbeddingTaskType(Enum):
@json_schema_type
class BatchCompletionResponse(BaseModel):
batch: List[CompletionResponse]
batch: list[CompletionResponse]
@json_schema_type
class BatchChatCompletionResponse(BaseModel):
batch: List[ChatCompletionResponse]
batch: list[ChatCompletionResponse]
@runtime_checkable
@ -843,11 +826,11 @@ class Inference(Protocol):
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> CompletionResponse | AsyncIterator[CompletionResponseStreamChunk]:
"""Generate a completion for the given content using the specified model.
:param model_id: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint.
@ -865,10 +848,10 @@ class Inference(Protocol):
async def batch_completion(
self,
model_id: str,
content_batch: List[InterleavedContent],
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
logprobs: Optional[LogProbConfig] = None,
content_batch: list[InterleavedContent],
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
logprobs: LogProbConfig | None = None,
) -> BatchCompletionResponse:
raise NotImplementedError("Batch completion is not implemented")
@ -876,16 +859,16 @@ class Inference(Protocol):
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
messages: list[Message],
sampling_params: SamplingParams | None = None,
tools: list[ToolDefinition] | None = None,
tool_choice: ToolChoice | None = ToolChoice.auto,
tool_prompt_format: ToolPromptFormat | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
tool_config: ToolConfig | None = None,
) -> ChatCompletionResponse | AsyncIterator[ChatCompletionResponseStreamChunk]:
"""Generate a chat completion for the given messages using the specified model.
:param model_id: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint.
@ -916,12 +899,12 @@ class Inference(Protocol):
async def batch_chat_completion(
self,
model_id: str,
messages_batch: List[List[Message]],
sampling_params: Optional[SamplingParams] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_config: Optional[ToolConfig] = None,
response_format: Optional[ResponseFormat] = None,
logprobs: Optional[LogProbConfig] = None,
messages_batch: list[list[Message]],
sampling_params: SamplingParams | None = None,
tools: list[ToolDefinition] | None = None,
tool_config: ToolConfig | None = None,
response_format: ResponseFormat | None = None,
logprobs: LogProbConfig | None = None,
) -> BatchChatCompletionResponse:
raise NotImplementedError("Batch chat completion is not implemented")
@ -929,10 +912,10 @@ class Inference(Protocol):
async def embeddings(
self,
model_id: str,
contents: List[str] | List[InterleavedContentItem],
text_truncation: Optional[TextTruncation] = TextTruncation.none,
output_dimension: Optional[int] = None,
task_type: Optional[EmbeddingTaskType] = None,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
"""Generate embeddings for content pieces using the specified model.
@ -950,25 +933,25 @@ class Inference(Protocol):
self,
# Standard OpenAI completion parameters
model: str,
prompt: Union[str, List[str], List[int], List[List[int]]],
best_of: Optional[int] = None,
echo: Optional[bool] = None,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[float] = None,
seed: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
stream: Optional[bool] = None,
stream_options: Optional[Dict[str, Any]] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
user: Optional[str] = None,
prompt: str | list[str] | list[int] | list[list[int]],
best_of: int | None = None,
echo: bool | None = None,
frequency_penalty: float | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_tokens: int | None = None,
n: int | None = None,
presence_penalty: float | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
top_p: float | None = None,
user: str | None = None,
# vLLM-specific parameters
guided_choice: Optional[List[str]] = None,
prompt_logprobs: Optional[int] = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
) -> OpenAICompletion:
"""Generate an OpenAI-compatible completion for the given prompt using the specified model.
@ -996,29 +979,29 @@ class Inference(Protocol):
async def openai_chat_completion(
self,
model: str,
messages: List[OpenAIMessageParam],
frequency_penalty: Optional[float] = None,
function_call: Optional[Union[str, Dict[str, Any]]] = None,
functions: Optional[List[Dict[str, Any]]] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
max_completion_tokens: Optional[int] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
parallel_tool_calls: Optional[bool] = None,
presence_penalty: Optional[float] = None,
response_format: Optional[OpenAIResponseFormatParam] = None,
seed: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
stream: Optional[bool] = None,
stream_options: Optional[Dict[str, Any]] = None,
temperature: Optional[float] = None,
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
tools: Optional[List[Dict[str, Any]]] = None,
top_logprobs: Optional[int] = None,
top_p: Optional[float] = None,
user: Optional[str] = None,
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
messages: list[OpenAIMessageParam],
frequency_penalty: float | None = None,
function_call: str | dict[str, Any] | None = None,
functions: list[dict[str, Any]] | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_completion_tokens: int | None = None,
max_tokens: int | None = None,
n: int | None = None,
parallel_tool_calls: bool | None = None,
presence_penalty: float | None = None,
response_format: OpenAIResponseFormatParam | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
tool_choice: str | dict[str, Any] | None = None,
tools: list[dict[str, Any]] | None = None,
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
"""Generate an OpenAI-compatible chat completion for the given messages using the specified model.
:param model: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint.

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List, Protocol, runtime_checkable
from typing import Protocol, runtime_checkable
from pydantic import BaseModel
@ -16,7 +16,7 @@ from llama_stack.schema_utils import json_schema_type, webmethod
class RouteInfo(BaseModel):
route: str
method: str
provider_types: List[str]
provider_types: list[str]
@json_schema_type
@ -30,7 +30,7 @@ class VersionInfo(BaseModel):
class ListRoutesResponse(BaseModel):
data: List[RouteInfo]
data: list[RouteInfo]
@runtime_checkable

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Protocol, runtime_checkable
from typing import Any, Literal, Protocol, runtime_checkable
from pydantic import BaseModel, ConfigDict, Field
@ -15,7 +15,7 @@ from llama_stack.schema_utils import json_schema_type, webmethod
class CommonModelFields(BaseModel):
metadata: Dict[str, Any] = Field(
metadata: dict[str, Any] = Field(
default_factory=dict,
description="Any additional metadata for this model",
)
@ -46,14 +46,14 @@ class Model(CommonModelFields, Resource):
class ModelInput(CommonModelFields):
model_id: str
provider_id: Optional[str] = None
provider_model_id: Optional[str] = None
model_type: Optional[ModelType] = ModelType.llm
provider_id: str | None = None
provider_model_id: str | None = None
model_type: ModelType | None = ModelType.llm
model_config = ConfigDict(protected_namespaces=())
class ListModelsResponse(BaseModel):
data: List[Model]
data: list[Model]
@json_schema_type
@ -73,7 +73,7 @@ class OpenAIModel(BaseModel):
class OpenAIListModelsResponse(BaseModel):
data: List[OpenAIModel]
data: list[OpenAIModel]
@runtime_checkable
@ -95,10 +95,10 @@ class Models(Protocol):
async def register_model(
self,
model_id: str,
provider_model_id: Optional[str] = None,
provider_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
model_type: Optional[ModelType] = None,
provider_model_id: str | None = None,
provider_id: str | None = None,
metadata: dict[str, Any] | None = None,
model_type: ModelType | None = None,
) -> Model: ...
@webmethod(route="/models/{model_id:path}", method="DELETE")

View file

@ -6,10 +6,9 @@
from datetime import datetime
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Protocol, Union
from typing import Annotated, Any, Literal, Protocol
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.common.job_types import JobStatus
@ -36,9 +35,9 @@ class DataConfig(BaseModel):
batch_size: int
shuffle: bool
data_format: DatasetFormat
validation_dataset_id: Optional[str] = None
packed: Optional[bool] = False
train_on_input: Optional[bool] = False
validation_dataset_id: str | None = None
packed: bool | None = False
train_on_input: bool | None = False
@json_schema_type
@ -51,10 +50,10 @@ class OptimizerConfig(BaseModel):
@json_schema_type
class EfficiencyConfig(BaseModel):
enable_activation_checkpointing: Optional[bool] = False
enable_activation_offloading: Optional[bool] = False
memory_efficient_fsdp_wrap: Optional[bool] = False
fsdp_cpu_offload: Optional[bool] = False
enable_activation_checkpointing: bool | None = False
enable_activation_offloading: bool | None = False
memory_efficient_fsdp_wrap: bool | None = False
fsdp_cpu_offload: bool | None = False
@json_schema_type
@ -62,23 +61,23 @@ class TrainingConfig(BaseModel):
n_epochs: int
max_steps_per_epoch: int = 1
gradient_accumulation_steps: int = 1
max_validation_steps: Optional[int] = 1
data_config: Optional[DataConfig] = None
optimizer_config: Optional[OptimizerConfig] = None
efficiency_config: Optional[EfficiencyConfig] = None
dtype: Optional[str] = "bf16"
max_validation_steps: int | None = 1
data_config: DataConfig | None = None
optimizer_config: OptimizerConfig | None = None
efficiency_config: EfficiencyConfig | None = None
dtype: str | None = "bf16"
@json_schema_type
class LoraFinetuningConfig(BaseModel):
type: Literal["LoRA"] = "LoRA"
lora_attn_modules: List[str]
lora_attn_modules: list[str]
apply_lora_to_mlp: bool
apply_lora_to_output: bool
rank: int
alpha: int
use_dora: Optional[bool] = False
quantize_base: Optional[bool] = False
use_dora: bool | None = False
quantize_base: bool | None = False
@json_schema_type
@ -88,7 +87,7 @@ class QATFinetuningConfig(BaseModel):
group_size: int
AlgorithmConfig = Annotated[Union[LoraFinetuningConfig, QATFinetuningConfig], Field(discriminator="type")]
AlgorithmConfig = Annotated[LoraFinetuningConfig | QATFinetuningConfig, Field(discriminator="type")]
register_schema(AlgorithmConfig, name="AlgorithmConfig")
@ -97,7 +96,7 @@ class PostTrainingJobLogStream(BaseModel):
"""Stream of logs from a finetuning job."""
job_uuid: str
log_lines: List[str]
log_lines: list[str]
@json_schema_type
@ -131,8 +130,8 @@ class PostTrainingRLHFRequest(BaseModel):
training_config: TrainingConfig
# TODO: define these
hyperparam_search_config: Dict[str, Any]
logger_config: Dict[str, Any]
hyperparam_search_config: dict[str, Any]
logger_config: dict[str, Any]
class PostTrainingJob(BaseModel):
@ -146,17 +145,17 @@ class PostTrainingJobStatusResponse(BaseModel):
job_uuid: str
status: JobStatus
scheduled_at: Optional[datetime] = None
started_at: Optional[datetime] = None
completed_at: Optional[datetime] = None
scheduled_at: datetime | None = None
started_at: datetime | None = None
completed_at: datetime | None = None
resources_allocated: Optional[Dict[str, Any]] = None
resources_allocated: dict[str, Any] | None = None
checkpoints: List[Checkpoint] = Field(default_factory=list)
checkpoints: list[Checkpoint] = Field(default_factory=list)
class ListPostTrainingJobsResponse(BaseModel):
data: List[PostTrainingJob]
data: list[PostTrainingJob]
@json_schema_type
@ -164,7 +163,7 @@ class PostTrainingJobArtifactsResponse(BaseModel):
"""Artifacts of a finetuning job."""
job_uuid: str
checkpoints: List[Checkpoint] = Field(default_factory=list)
checkpoints: list[Checkpoint] = Field(default_factory=list)
# TODO(ashwin): metrics, evals
@ -175,14 +174,14 @@ class PostTraining(Protocol):
self,
job_uuid: str,
training_config: TrainingConfig,
hyperparam_search_config: Dict[str, Any],
logger_config: Dict[str, Any],
model: Optional[str] = Field(
hyperparam_search_config: dict[str, Any],
logger_config: dict[str, Any],
model: str | None = Field(
default=None,
description="Model descriptor for training if not in provider config`",
),
checkpoint_dir: Optional[str] = None,
algorithm_config: Optional[AlgorithmConfig] = None,
checkpoint_dir: str | None = None,
algorithm_config: AlgorithmConfig | None = None,
) -> PostTrainingJob: ...
@webmethod(route="/post-training/preference-optimize", method="POST")
@ -192,8 +191,8 @@ class PostTraining(Protocol):
finetuned_model: str,
algorithm_config: DPOAlignmentConfig,
training_config: TrainingConfig,
hyperparam_search_config: Dict[str, Any],
logger_config: Dict[str, Any],
hyperparam_search_config: dict[str, Any],
logger_config: dict[str, Any],
) -> PostTrainingJob: ...
@webmethod(route="/post-training/jobs", method="GET")

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Protocol, runtime_checkable
from typing import Any, Protocol, runtime_checkable
from pydantic import BaseModel
@ -17,12 +17,12 @@ class ProviderInfo(BaseModel):
api: str
provider_id: str
provider_type: str
config: Dict[str, Any]
config: dict[str, Any]
health: HealthResponse
class ListProvidersResponse(BaseModel):
data: List[ProviderInfo]
data: list[ProviderInfo]
@runtime_checkable

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
from typing import Any, Protocol, runtime_checkable
from pydantic import BaseModel, Field
@ -27,16 +27,16 @@ class SafetyViolation(BaseModel):
violation_level: ViolationLevel
# what message should you convey to the user
user_message: Optional[str] = None
user_message: str | None = None
# additional metadata (including specific violation codes) more for
# debugging, telemetry
metadata: Dict[str, Any] = Field(default_factory=dict)
metadata: dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class RunShieldResponse(BaseModel):
violation: Optional[SafetyViolation] = None
violation: SafetyViolation | None = None
class ShieldStore(Protocol):
@ -52,6 +52,6 @@ class Safety(Protocol):
async def run_shield(
self,
shield_id: str,
messages: List[Message],
params: Dict[str, Any] = None,
messages: list[Message],
params: dict[str, Any] = None,
) -> RunShieldResponse: ...

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
from typing import Any, Protocol, runtime_checkable
from pydantic import BaseModel
@ -12,7 +12,7 @@ from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnParams
from llama_stack.schema_utils import json_schema_type, webmethod
# mapping of metric to value
ScoringResultRow = Dict[str, Any]
ScoringResultRow = dict[str, Any]
@json_schema_type
@ -24,15 +24,15 @@ class ScoringResult(BaseModel):
:param aggregated_results: Map of metric name to aggregated value
"""
score_rows: List[ScoringResultRow]
score_rows: list[ScoringResultRow]
# aggregated metrics to value
aggregated_results: Dict[str, Any]
aggregated_results: dict[str, Any]
@json_schema_type
class ScoreBatchResponse(BaseModel):
dataset_id: Optional[str] = None
results: Dict[str, ScoringResult]
dataset_id: str | None = None
results: dict[str, ScoringResult]
@json_schema_type
@ -44,7 +44,7 @@ class ScoreResponse(BaseModel):
"""
# each key in the dict is a scoring function name
results: Dict[str, ScoringResult]
results: dict[str, ScoringResult]
class ScoringFunctionStore(Protocol):
@ -59,15 +59,15 @@ class Scoring(Protocol):
async def score_batch(
self,
dataset_id: str,
scoring_functions: Dict[str, Optional[ScoringFnParams]],
scoring_functions: dict[str, ScoringFnParams | None],
save_results_dataset: bool = False,
) -> ScoreBatchResponse: ...
@webmethod(route="/scoring/score", method="POST")
async def score(
self,
input_rows: List[Dict[str, Any]],
scoring_functions: Dict[str, Optional[ScoringFnParams]],
input_rows: list[dict[str, Any]],
scoring_functions: dict[str, ScoringFnParams | None],
) -> ScoreResponse:
"""Score a list of rows.

View file

@ -6,18 +6,14 @@
from enum import Enum
from typing import (
Annotated,
Any,
Dict,
List,
Literal,
Optional,
Protocol,
Union,
runtime_checkable,
)
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from llama_stack.apis.common.type_system import ParamType
from llama_stack.apis.resource import Resource, ResourceType
@ -46,12 +42,12 @@ class AggregationFunctionType(Enum):
class LLMAsJudgeScoringFnParams(BaseModel):
type: Literal[ScoringFnParamsType.llm_as_judge.value] = ScoringFnParamsType.llm_as_judge.value
judge_model: str
prompt_template: Optional[str] = None
judge_score_regexes: Optional[List[str]] = Field(
prompt_template: str | None = None
judge_score_regexes: list[str] | None = Field(
description="Regexes to extract the answer from generated response",
default_factory=list,
)
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
aggregation_functions: list[AggregationFunctionType] | None = Field(
description="Aggregation functions to apply to the scores of each row",
default_factory=list,
)
@ -60,11 +56,11 @@ class LLMAsJudgeScoringFnParams(BaseModel):
@json_schema_type
class RegexParserScoringFnParams(BaseModel):
type: Literal[ScoringFnParamsType.regex_parser.value] = ScoringFnParamsType.regex_parser.value
parsing_regexes: Optional[List[str]] = Field(
parsing_regexes: list[str] | None = Field(
description="Regex to extract the answer from generated response",
default_factory=list,
)
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
aggregation_functions: list[AggregationFunctionType] | None = Field(
description="Aggregation functions to apply to the scores of each row",
default_factory=list,
)
@ -73,33 +69,29 @@ class RegexParserScoringFnParams(BaseModel):
@json_schema_type
class BasicScoringFnParams(BaseModel):
type: Literal[ScoringFnParamsType.basic.value] = ScoringFnParamsType.basic.value
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
aggregation_functions: list[AggregationFunctionType] | None = Field(
description="Aggregation functions to apply to the scores of each row",
default_factory=list,
)
ScoringFnParams = Annotated[
Union[
LLMAsJudgeScoringFnParams,
RegexParserScoringFnParams,
BasicScoringFnParams,
],
LLMAsJudgeScoringFnParams | RegexParserScoringFnParams | BasicScoringFnParams,
Field(discriminator="type"),
]
register_schema(ScoringFnParams, name="ScoringFnParams")
class CommonScoringFnFields(BaseModel):
description: Optional[str] = None
metadata: Dict[str, Any] = Field(
description: str | None = None
metadata: dict[str, Any] = Field(
default_factory=dict,
description="Any additional metadata for this definition",
)
return_type: ParamType = Field(
description="The return type of the deterministic function",
)
params: Optional[ScoringFnParams] = Field(
params: ScoringFnParams | None = Field(
description="The parameters for the scoring function for benchmark eval, these can be overridden for app eval",
default=None,
)
@ -120,12 +112,12 @@ class ScoringFn(CommonScoringFnFields, Resource):
class ScoringFnInput(CommonScoringFnFields, BaseModel):
scoring_fn_id: str
provider_id: Optional[str] = None
provider_scoring_fn_id: Optional[str] = None
provider_id: str | None = None
provider_scoring_fn_id: str | None = None
class ListScoringFunctionsResponse(BaseModel):
data: List[ScoringFn]
data: list[ScoringFn]
@runtime_checkable
@ -142,7 +134,7 @@ class ScoringFunctions(Protocol):
scoring_fn_id: str,
description: str,
return_type: ParamType,
provider_scoring_fn_id: Optional[str] = None,
provider_id: Optional[str] = None,
params: Optional[ScoringFnParams] = None,
provider_scoring_fn_id: str | None = None,
provider_id: str | None = None,
params: ScoringFnParams | None = None,
) -> None: ...

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Literal, Optional, Protocol, runtime_checkable
from typing import Any, Literal, Protocol, runtime_checkable
from pydantic import BaseModel
@ -14,7 +14,7 @@ from llama_stack.schema_utils import json_schema_type, webmethod
class CommonShieldFields(BaseModel):
params: Optional[Dict[str, Any]] = None
params: dict[str, Any] | None = None
@json_schema_type
@ -34,12 +34,12 @@ class Shield(CommonShieldFields, Resource):
class ShieldInput(CommonShieldFields):
shield_id: str
provider_id: Optional[str] = None
provider_shield_id: Optional[str] = None
provider_id: str | None = None
provider_shield_id: str | None = None
class ListShieldsResponse(BaseModel):
data: List[Shield]
data: list[Shield]
@runtime_checkable
@ -55,7 +55,7 @@ class Shields(Protocol):
async def register_shield(
self,
shield_id: str,
provider_shield_id: Optional[str] = None,
provider_id: Optional[str] = None,
params: Optional[Dict[str, Any]] = None,
provider_shield_id: str | None = None,
provider_id: str | None = None,
params: dict[str, Any] | None = None,
) -> Shield: ...

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, List, Optional, Protocol, Union
from typing import Any, Protocol
from pydantic import BaseModel
@ -28,24 +28,24 @@ class FilteringFunction(Enum):
class SyntheticDataGenerationRequest(BaseModel):
"""Request to generate synthetic data. A small batch of prompts and a filtering function"""
dialogs: List[Message]
dialogs: list[Message]
filtering_function: FilteringFunction = FilteringFunction.none
model: Optional[str] = None
model: str | None = None
@json_schema_type
class SyntheticDataGenerationResponse(BaseModel):
"""Response from the synthetic data generation. Batch of (prompt, response, score) tuples that pass the threshold."""
synthetic_data: List[Dict[str, Any]]
statistics: Optional[Dict[str, Any]] = None
synthetic_data: list[dict[str, Any]]
statistics: dict[str, Any] | None = None
class SyntheticDataGeneration(Protocol):
@webmethod(route="/synthetic-data-generation/generate")
def synthetic_data_generate(
self,
dialogs: List[Message],
dialogs: list[Message],
filtering_function: FilteringFunction = FilteringFunction.none,
model: Optional[str] = None,
) -> Union[SyntheticDataGenerationResponse]: ...
model: str | None = None,
) -> SyntheticDataGenerationResponse: ...

View file

@ -7,18 +7,14 @@
from datetime import datetime
from enum import Enum
from typing import (
Annotated,
Any,
Dict,
List,
Literal,
Optional,
Protocol,
Union,
runtime_checkable,
)
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from llama_stack.models.llama.datatypes import Primitive
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
@ -37,11 +33,11 @@ class SpanStatus(Enum):
class Span(BaseModel):
span_id: str
trace_id: str
parent_span_id: Optional[str] = None
parent_span_id: str | None = None
name: str
start_time: datetime
end_time: Optional[datetime] = None
attributes: Optional[Dict[str, Any]] = Field(default_factory=dict)
end_time: datetime | None = None
attributes: dict[str, Any] | None = Field(default_factory=dict)
def set_attribute(self, key: str, value: Any):
if self.attributes is None:
@ -54,7 +50,7 @@ class Trace(BaseModel):
trace_id: str
root_span_id: str
start_time: datetime
end_time: Optional[datetime] = None
end_time: datetime | None = None
@json_schema_type
@ -78,7 +74,7 @@ class EventCommon(BaseModel):
trace_id: str
span_id: str
timestamp: datetime
attributes: Optional[Dict[str, Primitive]] = Field(default_factory=dict)
attributes: dict[str, Primitive] | None = Field(default_factory=dict)
@json_schema_type
@ -92,15 +88,15 @@ class UnstructuredLogEvent(EventCommon):
class MetricEvent(EventCommon):
type: Literal[EventType.METRIC.value] = EventType.METRIC.value
metric: str # this would be an enum
value: Union[int, float]
value: int | float
unit: str
@json_schema_type
class MetricInResponse(BaseModel):
metric: str
value: Union[int, float]
unit: Optional[str] = None
value: int | float
unit: str | None = None
# This is a short term solution to allow inference API to return metrics
@ -124,7 +120,7 @@ class MetricInResponse(BaseModel):
class MetricResponseMixin(BaseModel):
metrics: Optional[List[MetricInResponse]] = None
metrics: list[MetricInResponse] | None = None
@json_schema_type
@ -137,7 +133,7 @@ class StructuredLogType(Enum):
class SpanStartPayload(BaseModel):
type: Literal[StructuredLogType.SPAN_START.value] = StructuredLogType.SPAN_START.value
name: str
parent_span_id: Optional[str] = None
parent_span_id: str | None = None
@json_schema_type
@ -147,10 +143,7 @@ class SpanEndPayload(BaseModel):
StructuredLogPayload = Annotated[
Union[
SpanStartPayload,
SpanEndPayload,
],
SpanStartPayload | SpanEndPayload,
Field(discriminator="type"),
]
register_schema(StructuredLogPayload, name="StructuredLogPayload")
@ -163,11 +156,7 @@ class StructuredLogEvent(EventCommon):
Event = Annotated[
Union[
UnstructuredLogEvent,
MetricEvent,
StructuredLogEvent,
],
UnstructuredLogEvent | MetricEvent | StructuredLogEvent,
Field(discriminator="type"),
]
register_schema(Event, name="Event")
@ -184,7 +173,7 @@ class EvalTrace(BaseModel):
@json_schema_type
class SpanWithStatus(Span):
status: Optional[SpanStatus] = None
status: SpanStatus | None = None
@json_schema_type
@ -203,15 +192,15 @@ class QueryCondition(BaseModel):
class QueryTracesResponse(BaseModel):
data: List[Trace]
data: list[Trace]
class QuerySpansResponse(BaseModel):
data: List[Span]
data: list[Span]
class QuerySpanTreeResponse(BaseModel):
data: Dict[str, SpanWithStatus]
data: dict[str, SpanWithStatus]
@runtime_checkable
@ -222,10 +211,10 @@ class Telemetry(Protocol):
@webmethod(route="/telemetry/traces", method="POST")
async def query_traces(
self,
attribute_filters: Optional[List[QueryCondition]] = None,
limit: Optional[int] = 100,
offset: Optional[int] = 0,
order_by: Optional[List[str]] = None,
attribute_filters: list[QueryCondition] | None = None,
limit: int | None = 100,
offset: int | None = 0,
order_by: list[str] | None = None,
) -> QueryTracesResponse: ...
@webmethod(route="/telemetry/traces/{trace_id:path}", method="GET")
@ -238,23 +227,23 @@ class Telemetry(Protocol):
async def get_span_tree(
self,
span_id: str,
attributes_to_return: Optional[List[str]] = None,
max_depth: Optional[int] = None,
attributes_to_return: list[str] | None = None,
max_depth: int | None = None,
) -> QuerySpanTreeResponse: ...
@webmethod(route="/telemetry/spans", method="POST")
async def query_spans(
self,
attribute_filters: List[QueryCondition],
attributes_to_return: List[str],
max_depth: Optional[int] = None,
attribute_filters: list[QueryCondition],
attributes_to_return: list[str],
max_depth: int | None = None,
) -> QuerySpansResponse: ...
@webmethod(route="/telemetry/spans/export", method="POST")
async def save_spans_to_dataset(
self,
attribute_filters: List[QueryCondition],
attributes_to_save: List[str],
attribute_filters: list[QueryCondition],
attributes_to_save: list[str],
dataset_id: str,
max_depth: Optional[int] = None,
max_depth: int | None = None,
) -> None: ...

View file

@ -5,10 +5,10 @@
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Union
from typing import Annotated, Any, Literal
from pydantic import BaseModel, Field
from typing_extensions import Annotated, Protocol, runtime_checkable
from typing_extensions import Protocol, runtime_checkable
from llama_stack.apis.common.content_types import URL, InterleavedContent
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
@ -29,13 +29,13 @@ class RAGDocument(BaseModel):
document_id: str
content: InterleavedContent | URL
mime_type: str | None = None
metadata: Dict[str, Any] = Field(default_factory=dict)
metadata: dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class RAGQueryResult(BaseModel):
content: Optional[InterleavedContent] = None
metadata: Dict[str, Any] = Field(default_factory=dict)
content: InterleavedContent | None = None
metadata: dict[str, Any] = Field(default_factory=dict)
@json_schema_type
@ -59,10 +59,7 @@ class LLMRAGQueryGeneratorConfig(BaseModel):
RAGQueryGeneratorConfig = Annotated[
Union[
DefaultRAGQueryGeneratorConfig,
LLMRAGQueryGeneratorConfig,
],
DefaultRAGQueryGeneratorConfig | LLMRAGQueryGeneratorConfig,
Field(discriminator="type"),
]
register_schema(RAGQueryGeneratorConfig, name="RAGQueryGeneratorConfig")
@ -83,7 +80,7 @@ class RAGToolRuntime(Protocol):
@webmethod(route="/tool-runtime/rag-tool/insert", method="POST")
async def insert(
self,
documents: List[RAGDocument],
documents: list[RAGDocument],
vector_db_id: str,
chunk_size_in_tokens: int = 512,
) -> None:
@ -94,8 +91,8 @@ class RAGToolRuntime(Protocol):
async def query(
self,
content: InterleavedContent,
vector_db_ids: List[str],
query_config: Optional[RAGQueryConfig] = None,
vector_db_ids: list[str],
query_config: RAGQueryConfig | None = None,
) -> RAGQueryResult:
"""Query the RAG system for context; typically invoked by the agent"""
...

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, List, Literal, Optional
from typing import Any, Literal
from pydantic import BaseModel, Field
from typing_extensions import Protocol, runtime_checkable
@ -24,7 +24,7 @@ class ToolParameter(BaseModel):
parameter_type: str
description: str
required: bool = Field(default=True)
default: Optional[Any] = None
default: Any | None = None
@json_schema_type
@ -40,39 +40,39 @@ class Tool(Resource):
toolgroup_id: str
tool_host: ToolHost
description: str
parameters: List[ToolParameter]
metadata: Optional[Dict[str, Any]] = None
parameters: list[ToolParameter]
metadata: dict[str, Any] | None = None
@json_schema_type
class ToolDef(BaseModel):
name: str
description: Optional[str] = None
parameters: Optional[List[ToolParameter]] = None
metadata: Optional[Dict[str, Any]] = None
description: str | None = None
parameters: list[ToolParameter] | None = None
metadata: dict[str, Any] | None = None
@json_schema_type
class ToolGroupInput(BaseModel):
toolgroup_id: str
provider_id: str
args: Optional[Dict[str, Any]] = None
mcp_endpoint: Optional[URL] = None
args: dict[str, Any] | None = None
mcp_endpoint: URL | None = None
@json_schema_type
class ToolGroup(Resource):
type: Literal[ResourceType.tool_group.value] = ResourceType.tool_group.value
mcp_endpoint: Optional[URL] = None
args: Optional[Dict[str, Any]] = None
mcp_endpoint: URL | None = None
args: dict[str, Any] | None = None
@json_schema_type
class ToolInvocationResult(BaseModel):
content: Optional[InterleavedContent] = None
error_message: Optional[str] = None
error_code: Optional[int] = None
metadata: Optional[Dict[str, Any]] = None
content: InterleavedContent | None = None
error_message: str | None = None
error_code: int | None = None
metadata: dict[str, Any] | None = None
class ToolStore(Protocol):
@ -81,11 +81,11 @@ class ToolStore(Protocol):
class ListToolGroupsResponse(BaseModel):
data: List[ToolGroup]
data: list[ToolGroup]
class ListToolsResponse(BaseModel):
data: List[Tool]
data: list[Tool]
class ListToolDefsResponse(BaseModel):
@ -100,8 +100,8 @@ class ToolGroups(Protocol):
self,
toolgroup_id: str,
provider_id: str,
mcp_endpoint: Optional[URL] = None,
args: Optional[Dict[str, Any]] = None,
mcp_endpoint: URL | None = None,
args: dict[str, Any] | None = None,
) -> None:
"""Register a tool group"""
...
@ -118,7 +118,7 @@ class ToolGroups(Protocol):
...
@webmethod(route="/tools", method="GET")
async def list_tools(self, toolgroup_id: Optional[str] = None) -> ListToolsResponse:
async def list_tools(self, toolgroup_id: str | None = None) -> ListToolsResponse:
"""List tools with optional tool group"""
...
@ -151,10 +151,10 @@ class ToolRuntime(Protocol):
# TODO: This needs to be renamed once OPEN API generator name conflict issue is fixed.
@webmethod(route="/tool-runtime/list-tools", method="GET")
async def list_runtime_tools(
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
self, tool_group_id: str | None = None, mcp_endpoint: URL | None = None
) -> ListToolDefsResponse: ...
@webmethod(route="/tool-runtime/invoke", method="POST")
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
async def invoke_tool(self, tool_name: str, kwargs: dict[str, Any]) -> ToolInvocationResult:
"""Run a tool with the given arguments"""
...

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List, Literal, Optional, Protocol, runtime_checkable
from typing import Literal, Protocol, runtime_checkable
from pydantic import BaseModel
@ -33,11 +33,11 @@ class VectorDBInput(BaseModel):
vector_db_id: str
embedding_model: str
embedding_dimension: int
provider_vector_db_id: Optional[str] = None
provider_vector_db_id: str | None = None
class ListVectorDBsResponse(BaseModel):
data: List[VectorDB]
data: list[VectorDB]
@runtime_checkable
@ -57,9 +57,9 @@ class VectorDBs(Protocol):
self,
vector_db_id: str,
embedding_model: str,
embedding_dimension: Optional[int] = 384,
provider_id: Optional[str] = None,
provider_vector_db_id: Optional[str] = None,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorDB: ...
@webmethod(route="/vector-dbs/{vector_db_id:path}", method="DELETE")

View file

@ -8,7 +8,7 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
from typing import Any, Protocol, runtime_checkable
from pydantic import BaseModel, Field
@ -20,17 +20,17 @@ from llama_stack.schema_utils import json_schema_type, webmethod
class Chunk(BaseModel):
content: InterleavedContent
metadata: Dict[str, Any] = Field(default_factory=dict)
metadata: dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class QueryChunksResponse(BaseModel):
chunks: List[Chunk]
scores: List[float]
chunks: list[Chunk]
scores: list[float]
class VectorDBStore(Protocol):
def get_vector_db(self, vector_db_id: str) -> Optional[VectorDB]: ...
def get_vector_db(self, vector_db_id: str) -> VectorDB | None: ...
@runtime_checkable
@ -44,8 +44,8 @@ class VectorIO(Protocol):
async def insert_chunks(
self,
vector_db_id: str,
chunks: List[Chunk],
ttl_seconds: Optional[int] = None,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None: ...
@webmethod(route="/vector-io/query", method="POST")
@ -53,5 +53,5 @@ class VectorIO(Protocol):
self,
vector_db_id: str,
query: InterleavedContent,
params: Optional[Dict[str, Any]] = None,
params: dict[str, Any] | None = None,
) -> QueryChunksResponse: ...

View file

@ -13,7 +13,6 @@ from dataclasses import dataclass
from datetime import datetime, timezone
from functools import partial
from pathlib import Path
from typing import Dict, List, Optional
import httpx
from pydantic import BaseModel, ConfigDict
@ -102,7 +101,7 @@ class DownloadTask:
output_file: str
total_size: int = 0
downloaded_size: int = 0
task_id: Optional[int] = None
task_id: int | None = None
retries: int = 0
max_retries: int = 3
@ -262,7 +261,7 @@ class ParallelDownloader:
self.progress.update(task.task_id, description=f"[red]Failed: {task.output_file}[/red]")
raise DownloadError(f"Download failed for {task.output_file}: {str(e)}") from e
def has_disk_space(self, tasks: List[DownloadTask]) -> bool:
def has_disk_space(self, tasks: list[DownloadTask]) -> bool:
try:
total_remaining_size = sum(task.total_size - task.downloaded_size for task in tasks)
dir_path = os.path.dirname(os.path.abspath(tasks[0].output_file))
@ -282,7 +281,7 @@ class ParallelDownloader:
except Exception as e:
raise DownloadError(f"Failed to check disk space: {str(e)}") from e
async def download_all(self, tasks: List[DownloadTask]) -> None:
async def download_all(self, tasks: list[DownloadTask]) -> None:
if not tasks:
raise ValueError("No download tasks provided")
@ -391,20 +390,20 @@ def _meta_download(
class ModelEntry(BaseModel):
model_id: str
files: Dict[str, str]
files: dict[str, str]
model_config = ConfigDict(protected_namespaces=())
class Manifest(BaseModel):
models: List[ModelEntry]
models: list[ModelEntry]
expires_on: datetime
def _download_from_manifest(manifest_file: str, max_concurrent_downloads: int):
from llama_stack.distribution.utils.model_utils import model_local_dir
with open(manifest_file, "r") as f:
with open(manifest_file) as f:
d = json.load(f)
manifest = Manifest(**d)

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from typing import Any
from pydantic import BaseModel, ConfigDict, Field
@ -22,7 +22,7 @@ class PromptGuardModel(BaseModel):
max_seq_length: int = 512
is_instruct_model: bool = False
quantization_format: CheckpointQuantizationFormat = CheckpointQuantizationFormat.bf16
arch_args: Dict[str, Any] = Field(default_factory=dict)
arch_args: dict[str, Any] = Field(default_factory=dict)
def descriptor(self) -> str:
return self.model_id
@ -44,11 +44,11 @@ def prompt_guard_model_skus():
]
def prompt_guard_model_sku_map() -> Dict[str, Any]:
def prompt_guard_model_sku_map() -> dict[str, Any]:
return {model.model_id: model for model in prompt_guard_model_skus()}
def prompt_guard_download_info_map() -> Dict[str, LlamaDownloadInfo]:
def prompt_guard_download_info_map() -> dict[str, LlamaDownloadInfo]:
return {
model.model_id: LlamaDownloadInfo(
folder="Prompt-Guard" if model.model_id == "Prompt-Guard-86M" else model.model_id,

View file

@ -13,7 +13,6 @@ import sys
import textwrap
from functools import lru_cache
from pathlib import Path
from typing import Dict, Optional
import yaml
from prompt_toolkit import prompt
@ -46,14 +45,14 @@ from llama_stack.providers.datatypes import Api
TEMPLATES_PATH = Path(__file__).parent.parent.parent / "templates"
@lru_cache()
def available_templates_specs() -> Dict[str, BuildConfig]:
@lru_cache
def available_templates_specs() -> dict[str, BuildConfig]:
import yaml
template_specs = {}
for p in TEMPLATES_PATH.rglob("*build.yaml"):
template_name = p.parent.name
with open(p, "r") as f:
with open(p) as f:
build_config = BuildConfig(**yaml.safe_load(f))
template_specs[template_name] = build_config
return template_specs
@ -178,7 +177,7 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
if not available_providers:
continue
api_provider = prompt(
"> Enter provider for API {}: ".format(api.value),
f"> Enter provider for API {api.value}: ",
completer=WordCompleter(available_providers),
complete_while_typing=True,
validator=Validator.from_callable(
@ -201,7 +200,7 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
build_config = BuildConfig(image_type=image_type, distribution_spec=distribution_spec)
else:
with open(args.config, "r") as f:
with open(args.config) as f:
try:
build_config = BuildConfig(**yaml.safe_load(f))
except Exception as e:
@ -332,9 +331,9 @@ def _generate_run_config(
def _run_stack_build_command_from_build_config(
build_config: BuildConfig,
image_name: Optional[str] = None,
template_name: Optional[str] = None,
config_path: Optional[str] = None,
image_name: str | None = None,
template_name: str | None = None,
config_path: str | None = None,
) -> str:
image_name = image_name or build_config.image_name
if build_config.image_type == LlamaStackImageType.CONTAINER.value:

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Iterable
from collections.abc import Iterable
from rich.console import Console
from rich.table import Table

View file

@ -9,7 +9,6 @@ import hashlib
from dataclasses import dataclass
from functools import partial
from pathlib import Path
from typing import Dict, List, Optional
from rich.console import Console
from rich.progress import Progress, SpinnerColumn, TextColumn
@ -21,7 +20,7 @@ from llama_stack.cli.subcommand import Subcommand
class VerificationResult:
filename: str
expected_hash: str
actual_hash: Optional[str]
actual_hash: str | None
exists: bool
matches: bool
@ -60,9 +59,9 @@ def calculate_md5(filepath: Path, chunk_size: int = 8192) -> str:
return md5_hash.hexdigest()
def load_checksums(checklist_path: Path) -> Dict[str, str]:
def load_checksums(checklist_path: Path) -> dict[str, str]:
checksums = {}
with open(checklist_path, "r") as f:
with open(checklist_path) as f:
for line in f:
if line.strip():
md5sum, filepath = line.strip().split(" ", 1)
@ -72,7 +71,7 @@ def load_checksums(checklist_path: Path) -> Dict[str, str]:
return checksums
def verify_files(model_dir: Path, checksums: Dict[str, str], console: Console) -> List[VerificationResult]:
def verify_files(model_dir: Path, checksums: dict[str, str], console: Console) -> list[VerificationResult]:
results = []
with Progress(

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, Optional
from typing import Any
from llama_stack.distribution.datatypes import AccessAttributes
from llama_stack.log import get_logger
@ -14,8 +14,8 @@ logger = get_logger(__name__, category="core")
def check_access(
obj_identifier: str,
obj_attributes: Optional[AccessAttributes],
user_attributes: Optional[Dict[str, Any]] = None,
obj_attributes: AccessAttributes | None,
user_attributes: dict[str, Any] | None = None,
) -> bool:
"""Check if the current user has access to the given object, based on access attributes.

View file

@ -8,7 +8,7 @@ import inspect
import json
from collections.abc import AsyncIterator
from enum import Enum
from typing import Any, Type, Union, get_args, get_origin
from typing import Any, Union, get_args, get_origin
import httpx
from pydantic import BaseModel, parse_obj_as
@ -27,7 +27,7 @@ async def get_client_impl(protocol, config: RemoteProviderConfig, _deps: Any):
return impl
def create_api_client_class(protocol) -> Type:
def create_api_client_class(protocol) -> type:
if protocol in _CLIENT_CLASSES:
return _CLIENT_CLASSES[protocol]

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
import logging
import textwrap
from typing import Any, Dict
from typing import Any
from llama_stack.distribution.datatypes import (
LLAMA_STACK_RUN_CONFIG_VERSION,
@ -24,7 +24,7 @@ from llama_stack.providers.datatypes import Api, ProviderSpec
logger = logging.getLogger(__name__)
def configure_single_provider(registry: Dict[str, ProviderSpec], provider: Provider) -> Provider:
def configure_single_provider(registry: dict[str, ProviderSpec], provider: Provider) -> Provider:
provider_spec = registry[provider.provider_type]
config_type = instantiate_class_type(provider_spec.config_class)
try:
@ -120,8 +120,8 @@ def configure_api_providers(config: StackRunConfig, build_spec: DistributionSpec
def upgrade_from_routing_table(
config_dict: Dict[str, Any],
) -> Dict[str, Any]:
config_dict: dict[str, Any],
) -> dict[str, Any]:
def get_providers(entries):
return [
Provider(
@ -163,7 +163,7 @@ def upgrade_from_routing_table(
return config_dict
def parse_and_maybe_upgrade_config(config_dict: Dict[str, Any]) -> StackRunConfig:
def parse_and_maybe_upgrade_config(config_dict: dict[str, Any]) -> StackRunConfig:
version = config_dict.get("version", None)
if version == LLAMA_STACK_RUN_CONFIG_VERSION:
return StackRunConfig(**config_dict)

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from enum import Enum
from typing import Annotated, Any, Dict, List, Optional, Union
from typing import Annotated, Any
from pydantic import BaseModel, Field
@ -30,7 +30,7 @@ LLAMA_STACK_BUILD_CONFIG_VERSION = "2"
LLAMA_STACK_RUN_CONFIG_VERSION = "2"
RoutingKey = Union[str, List[str]]
RoutingKey = str | list[str]
class AccessAttributes(BaseModel):
@ -47,17 +47,17 @@ class AccessAttributes(BaseModel):
"""
# Standard attribute categories - the minimal set we need now
roles: Optional[List[str]] = Field(
roles: list[str] | None = Field(
default=None, description="Role-based attributes (e.g., 'admin', 'data-scientist', 'user')"
)
teams: Optional[List[str]] = Field(default=None, description="Team-based attributes (e.g., 'ml-team', 'nlp-team')")
teams: list[str] | None = Field(default=None, description="Team-based attributes (e.g., 'ml-team', 'nlp-team')")
projects: Optional[List[str]] = Field(
projects: list[str] | None = Field(
default=None, description="Project-based access attributes (e.g., 'llama-3', 'customer-insights')"
)
namespaces: Optional[List[str]] = Field(
namespaces: list[str] | None = Field(
default=None, description="Namespace-based access control for resource isolation"
)
@ -106,7 +106,7 @@ class ResourceWithACL(Resource):
# ^ User must have access to the customer-insights project AND have confidential namespace
"""
access_attributes: Optional[AccessAttributes] = None
access_attributes: AccessAttributes | None = None
# Use the extended Resource for all routable objects
@ -142,41 +142,21 @@ class ToolGroupWithACL(ToolGroup, ResourceWithACL):
pass
RoutableObject = Union[
Model,
Shield,
VectorDB,
Dataset,
ScoringFn,
Benchmark,
Tool,
ToolGroup,
]
RoutableObject = Model | Shield | VectorDB | Dataset | ScoringFn | Benchmark | Tool | ToolGroup
RoutableObjectWithProvider = Annotated[
Union[
ModelWithACL,
ShieldWithACL,
VectorDBWithACL,
DatasetWithACL,
ScoringFnWithACL,
BenchmarkWithACL,
ToolWithACL,
ToolGroupWithACL,
],
ModelWithACL
| ShieldWithACL
| VectorDBWithACL
| DatasetWithACL
| ScoringFnWithACL
| BenchmarkWithACL
| ToolWithACL
| ToolGroupWithACL,
Field(discriminator="type"),
]
RoutedProtocol = Union[
Inference,
Safety,
VectorIO,
DatasetIO,
Scoring,
Eval,
ToolRuntime,
]
RoutedProtocol = Inference | Safety | VectorIO | DatasetIO | Scoring | Eval | ToolRuntime
# Example: /inference, /safety
@ -184,15 +164,15 @@ class AutoRoutedProviderSpec(ProviderSpec):
provider_type: str = "router"
config_class: str = ""
container_image: Optional[str] = None
container_image: str | None = None
routing_table_api: Api
module: str
provider_data_validator: Optional[str] = Field(
provider_data_validator: str | None = Field(
default=None,
)
@property
def pip_packages(self) -> List[str]:
def pip_packages(self) -> list[str]:
raise AssertionError("Should not be called on AutoRoutedProviderSpec")
@ -200,20 +180,20 @@ class AutoRoutedProviderSpec(ProviderSpec):
class RoutingTableProviderSpec(ProviderSpec):
provider_type: str = "routing_table"
config_class: str = ""
container_image: Optional[str] = None
container_image: str | None = None
router_api: Api
module: str
pip_packages: List[str] = Field(default_factory=list)
pip_packages: list[str] = Field(default_factory=list)
class DistributionSpec(BaseModel):
description: Optional[str] = Field(
description: str | None = Field(
default="",
description="Description of the distribution",
)
container_image: Optional[str] = None
providers: Dict[str, Union[str, List[str]]] = Field(
container_image: str | None = None
providers: dict[str, str | list[str]] = Field(
default_factory=dict,
description="""
Provider Types for each of the APIs provided by this distribution. If you
@ -225,12 +205,12 @@ in the runtime configuration to help route to the correct provider.""",
class Provider(BaseModel):
provider_id: str
provider_type: str
config: Dict[str, Any]
config: dict[str, Any]
class LoggingConfig(BaseModel):
category_levels: Dict[str, str] = Field(
default_factory=Dict,
category_levels: dict[str, str] = Field(
default_factory=dict,
description="""
Dictionary of different logging configurations for different portions (ex: core, server) of llama stack""",
)
@ -248,7 +228,7 @@ class AuthenticationConfig(BaseModel):
...,
description="Type of authentication provider (e.g., 'kubernetes', 'custom')",
)
config: Dict[str, str] = Field(
config: dict[str, str] = Field(
...,
description="Provider-specific configuration",
)
@ -261,15 +241,15 @@ class ServerConfig(BaseModel):
ge=1024,
le=65535,
)
tls_certfile: Optional[str] = Field(
tls_certfile: str | None = Field(
default=None,
description="Path to TLS certificate file for HTTPS",
)
tls_keyfile: Optional[str] = Field(
tls_keyfile: str | None = Field(
default=None,
description="Path to TLS key file for HTTPS",
)
auth: Optional[AuthenticationConfig] = Field(
auth: AuthenticationConfig | None = Field(
default=None,
description="Authentication configuration for the server",
)
@ -285,23 +265,23 @@ Reference to the distribution this package refers to. For unregistered (adhoc) p
this could be just a hash
""",
)
container_image: Optional[str] = Field(
container_image: str | None = Field(
default=None,
description="Reference to the container image if this package refers to a container",
)
apis: List[str] = Field(
apis: list[str] = Field(
default_factory=list,
description="""
The list of APIs to serve. If not specified, all APIs specified in the provider_map will be served""",
)
providers: Dict[str, List[Provider]] = Field(
providers: dict[str, list[Provider]] = Field(
description="""
One or more providers to use for each API. The same provider_type (e.g., meta-reference)
can be instantiated multiple times (with different configs) if necessary.
""",
)
metadata_store: Optional[KVStoreConfig] = Field(
metadata_store: KVStoreConfig | None = Field(
default=None,
description="""
Configuration for the persistence store used by the distribution registry. If not specified,
@ -309,22 +289,22 @@ a default SQLite store will be used.""",
)
# registry of "resources" in the distribution
models: List[ModelInput] = Field(default_factory=list)
shields: List[ShieldInput] = Field(default_factory=list)
vector_dbs: List[VectorDBInput] = Field(default_factory=list)
datasets: List[DatasetInput] = Field(default_factory=list)
scoring_fns: List[ScoringFnInput] = Field(default_factory=list)
benchmarks: List[BenchmarkInput] = Field(default_factory=list)
tool_groups: List[ToolGroupInput] = Field(default_factory=list)
models: list[ModelInput] = Field(default_factory=list)
shields: list[ShieldInput] = Field(default_factory=list)
vector_dbs: list[VectorDBInput] = Field(default_factory=list)
datasets: list[DatasetInput] = Field(default_factory=list)
scoring_fns: list[ScoringFnInput] = Field(default_factory=list)
benchmarks: list[BenchmarkInput] = Field(default_factory=list)
tool_groups: list[ToolGroupInput] = Field(default_factory=list)
logging: Optional[LoggingConfig] = Field(default=None, description="Configuration for Llama Stack Logging")
logging: LoggingConfig | None = Field(default=None, description="Configuration for Llama Stack Logging")
server: ServerConfig = Field(
default_factory=ServerConfig,
description="Configuration for the HTTP(S) server",
)
external_providers_dir: Optional[str] = Field(
external_providers_dir: str | None = Field(
default=None,
description="Path to directory containing external provider implementations. The providers code and dependencies must be installed on the system.",
)
@ -338,11 +318,11 @@ class BuildConfig(BaseModel):
default="conda",
description="Type of package to build (conda | container | venv)",
)
image_name: Optional[str] = Field(
image_name: str | None = Field(
default=None,
description="Name of the distribution to build",
)
external_providers_dir: Optional[str] = Field(
external_providers_dir: str | None = Field(
default=None,
description="Path to directory containing external provider implementations. The providers packages will be resolved from this directory. "
"pip_packages MUST contain the provider package name.",

View file

@ -7,7 +7,7 @@
import glob
import importlib
import os
from typing import Any, Dict, List
from typing import Any
import yaml
from pydantic import BaseModel
@ -24,7 +24,7 @@ from llama_stack.providers.datatypes import (
logger = get_logger(name=__name__, category="core")
def stack_apis() -> List[Api]:
def stack_apis() -> list[Api]:
return list(Api)
@ -33,7 +33,7 @@ class AutoRoutedApiInfo(BaseModel):
router_api: Api
def builtin_automatically_routed_apis() -> List[AutoRoutedApiInfo]:
def builtin_automatically_routed_apis() -> list[AutoRoutedApiInfo]:
return [
AutoRoutedApiInfo(
routing_table_api=Api.models,
@ -66,12 +66,12 @@ def builtin_automatically_routed_apis() -> List[AutoRoutedApiInfo]:
]
def providable_apis() -> List[Api]:
def providable_apis() -> list[Api]:
routing_table_apis = {x.routing_table_api for x in builtin_automatically_routed_apis()}
return [api for api in Api if api not in routing_table_apis and api != Api.inspect and api != Api.providers]
def _load_remote_provider_spec(spec_data: Dict[str, Any], api: Api) -> ProviderSpec:
def _load_remote_provider_spec(spec_data: dict[str, Any], api: Api) -> ProviderSpec:
adapter = AdapterSpec(**spec_data["adapter"])
spec = remote_provider_spec(
api=api,
@ -81,7 +81,7 @@ def _load_remote_provider_spec(spec_data: Dict[str, Any], api: Api) -> ProviderS
return spec
def _load_inline_provider_spec(spec_data: Dict[str, Any], api: Api, provider_name: str) -> ProviderSpec:
def _load_inline_provider_spec(spec_data: dict[str, Any], api: Api, provider_name: str) -> ProviderSpec:
spec = InlineProviderSpec(
api=api,
provider_type=f"inline::{provider_name}",
@ -98,7 +98,7 @@ def _load_inline_provider_spec(spec_data: Dict[str, Any], api: Api, provider_nam
def get_provider_registry(
config=None,
) -> Dict[Api, Dict[str, ProviderSpec]]:
) -> dict[Api, dict[str, ProviderSpec]]:
"""Get the provider registry, optionally including external providers.
This function loads both built-in providers and external providers from YAML files.
@ -133,7 +133,7 @@ def get_provider_registry(
ValueError: If any provider spec is invalid
"""
ret: Dict[Api, Dict[str, ProviderSpec]] = {}
ret: dict[Api, dict[str, ProviderSpec]] = {}
for api in providable_apis():
name = api.name.lower()
logger.debug(f"Importing module {name}")

View file

@ -12,7 +12,7 @@ import os
from concurrent.futures import ThreadPoolExecutor
from enum import Enum
from pathlib import Path
from typing import Any, Optional, TypeVar, Union, get_args, get_origin
from typing import Any, TypeVar, Union, get_args, get_origin
import httpx
import yaml
@ -119,8 +119,8 @@ class LlamaStackAsLibraryClient(LlamaStackClient):
self,
config_path_or_template_name: str,
skip_logger_removal: bool = False,
custom_provider_registry: Optional[ProviderRegistry] = None,
provider_data: Optional[dict[str, Any]] = None,
custom_provider_registry: ProviderRegistry | None = None,
provider_data: dict[str, Any] | None = None,
):
super().__init__()
self.async_client = AsyncLlamaStackAsLibraryClient(
@ -181,8 +181,8 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
def __init__(
self,
config_path_or_template_name: str,
custom_provider_registry: Optional[ProviderRegistry] = None,
provider_data: Optional[dict[str, Any]] = None,
custom_provider_registry: ProviderRegistry | None = None,
provider_data: dict[str, Any] | None = None,
):
super().__init__()
# when using the library client, we should not log to console since many
@ -371,7 +371,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
)
return await response.parse()
def _convert_body(self, path: str, method: str, body: Optional[dict] = None) -> dict:
def _convert_body(self, path: str, method: str, body: dict | None = None) -> dict:
if not body:
return {}

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
import asyncio
from typing import Any, Dict
from typing import Any
from pydantic import BaseModel
@ -73,14 +73,14 @@ class ProviderImpl(Providers):
raise ValueError(f"Provider {provider_id} not found")
async def get_providers_health(self) -> Dict[str, Dict[str, HealthResponse]]:
async def get_providers_health(self) -> dict[str, dict[str, HealthResponse]]:
"""Get health status for all providers.
Returns:
Dict[str, Dict[str, HealthResponse]]: A dictionary mapping API names to provider health statuses.
Each API maps to a dictionary of provider IDs to their health responses.
"""
providers_health: Dict[str, Dict[str, HealthResponse]] = {}
providers_health: dict[str, dict[str, HealthResponse]] = {}
timeout = 1.0
async def check_provider_health(impl: Any) -> tuple[str, HealthResponse] | None:

View file

@ -7,7 +7,8 @@
import contextvars
import json
import logging
from typing import Any, ContextManager, Dict, List, Optional
from contextlib import AbstractContextManager
from typing import Any
from .utils.dynamic import instantiate_class_type
@ -17,11 +18,11 @@ log = logging.getLogger(__name__)
PROVIDER_DATA_VAR = contextvars.ContextVar("provider_data", default=None)
class RequestProviderDataContext(ContextManager):
class RequestProviderDataContext(AbstractContextManager):
"""Context manager for request provider data"""
def __init__(
self, provider_data: Optional[Dict[str, Any]] = None, auth_attributes: Optional[Dict[str, List[str]]] = None
self, provider_data: dict[str, Any] | None = None, auth_attributes: dict[str, list[str]] | None = None
):
self.provider_data = provider_data or {}
if auth_attributes:
@ -63,7 +64,7 @@ class NeedsRequestProviderData:
return None
def parse_request_provider_data(headers: Dict[str, str]) -> Optional[Dict[str, Any]]:
def parse_request_provider_data(headers: dict[str, str]) -> dict[str, Any] | None:
"""Parse provider data from request headers"""
keys = [
"X-LlamaStack-Provider-Data",
@ -86,14 +87,14 @@ def parse_request_provider_data(headers: Dict[str, str]) -> Optional[Dict[str, A
def request_provider_data_context(
headers: Dict[str, str], auth_attributes: Optional[Dict[str, List[str]]] = None
) -> ContextManager:
headers: dict[str, str], auth_attributes: dict[str, list[str]] | None = None
) -> AbstractContextManager:
"""Context manager that sets request provider data from headers and auth attributes for the duration of the context"""
provider_data = parse_request_provider_data(headers)
return RequestProviderDataContext(provider_data, auth_attributes)
def get_auth_attributes() -> Optional[Dict[str, List[str]]]:
def get_auth_attributes() -> dict[str, list[str]] | None:
"""Helper to retrieve auth attributes from the provider data context"""
provider_data = PROVIDER_DATA_VAR.get()
if not provider_data:

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
import importlib
import inspect
from typing import Any, Dict, List, Set, Tuple
from typing import Any
from llama_stack.apis.agents import Agents
from llama_stack.apis.benchmarks import Benchmarks
@ -58,7 +58,7 @@ class InvalidProviderError(Exception):
pass
def api_protocol_map() -> Dict[Api, Any]:
def api_protocol_map() -> dict[Api, Any]:
return {
Api.providers: ProvidersAPI,
Api.agents: Agents,
@ -83,7 +83,7 @@ def api_protocol_map() -> Dict[Api, Any]:
}
def additional_protocols_map() -> Dict[Api, Any]:
def additional_protocols_map() -> dict[Api, Any]:
return {
Api.inference: (ModelsProtocolPrivate, Models, Api.models),
Api.tool_groups: (ToolsProtocolPrivate, ToolGroups, Api.tool_groups),
@ -104,14 +104,14 @@ class ProviderWithSpec(Provider):
spec: ProviderSpec
ProviderRegistry = Dict[Api, Dict[str, ProviderSpec]]
ProviderRegistry = dict[Api, dict[str, ProviderSpec]]
async def resolve_impls(
run_config: StackRunConfig,
provider_registry: ProviderRegistry,
dist_registry: DistributionRegistry,
) -> Dict[Api, Any]:
) -> dict[Api, Any]:
"""
Resolves provider implementations by:
1. Validating and organizing providers.
@ -136,7 +136,7 @@ async def resolve_impls(
return await instantiate_providers(sorted_providers, router_apis, dist_registry)
def specs_for_autorouted_apis(apis_to_serve: List[str] | Set[str]) -> Dict[str, Dict[str, ProviderWithSpec]]:
def specs_for_autorouted_apis(apis_to_serve: list[str] | set[str]) -> dict[str, dict[str, ProviderWithSpec]]:
"""Generates specifications for automatically routed APIs."""
specs = {}
for info in builtin_automatically_routed_apis():
@ -178,10 +178,10 @@ def specs_for_autorouted_apis(apis_to_serve: List[str] | Set[str]) -> Dict[str,
def validate_and_prepare_providers(
run_config: StackRunConfig, provider_registry: ProviderRegistry, routing_table_apis: Set[Api], router_apis: Set[Api]
) -> Dict[str, Dict[str, ProviderWithSpec]]:
run_config: StackRunConfig, provider_registry: ProviderRegistry, routing_table_apis: set[Api], router_apis: set[Api]
) -> dict[str, dict[str, ProviderWithSpec]]:
"""Validates providers, handles deprecations, and organizes them into a spec dictionary."""
providers_with_specs: Dict[str, Dict[str, ProviderWithSpec]] = {}
providers_with_specs: dict[str, dict[str, ProviderWithSpec]] = {}
for api_str, providers in run_config.providers.items():
api = Api(api_str)
@ -222,10 +222,10 @@ def validate_provider(provider: Provider, api: Api, provider_registry: ProviderR
def sort_providers_by_deps(
providers_with_specs: Dict[str, Dict[str, ProviderWithSpec]], run_config: StackRunConfig
) -> List[Tuple[str, ProviderWithSpec]]:
providers_with_specs: dict[str, dict[str, ProviderWithSpec]], run_config: StackRunConfig
) -> list[tuple[str, ProviderWithSpec]]:
"""Sorts providers based on their dependencies."""
sorted_providers: List[Tuple[str, ProviderWithSpec]] = topological_sort(
sorted_providers: list[tuple[str, ProviderWithSpec]] = topological_sort(
{k: list(v.values()) for k, v in providers_with_specs.items()}
)
@ -236,11 +236,11 @@ def sort_providers_by_deps(
async def instantiate_providers(
sorted_providers: List[Tuple[str, ProviderWithSpec]], router_apis: Set[Api], dist_registry: DistributionRegistry
) -> Dict:
sorted_providers: list[tuple[str, ProviderWithSpec]], router_apis: set[Api], dist_registry: DistributionRegistry
) -> dict:
"""Instantiates providers asynchronously while managing dependencies."""
impls: Dict[Api, Any] = {}
inner_impls_by_provider_id: Dict[str, Dict[str, Any]] = {f"inner-{x.value}": {} for x in router_apis}
impls: dict[Api, Any] = {}
inner_impls_by_provider_id: dict[str, dict[str, Any]] = {f"inner-{x.value}": {} for x in router_apis}
for api_str, provider in sorted_providers:
deps = {a: impls[a] for a in provider.spec.api_dependencies}
for a in provider.spec.optional_api_dependencies:
@ -263,9 +263,9 @@ async def instantiate_providers(
def topological_sort(
providers_with_specs: Dict[str, List[ProviderWithSpec]],
) -> List[Tuple[str, ProviderWithSpec]]:
def dfs(kv, visited: Set[str], stack: List[str]):
providers_with_specs: dict[str, list[ProviderWithSpec]],
) -> list[tuple[str, ProviderWithSpec]]:
def dfs(kv, visited: set[str], stack: list[str]):
api_str, providers = kv
visited.add(api_str)
@ -280,8 +280,8 @@ def topological_sort(
stack.append(api_str)
visited: Set[str] = set()
stack: List[str] = []
visited: set[str] = set()
stack: list[str] = []
for api_str, providers in providers_with_specs.items():
if api_str not in visited:
@ -298,8 +298,8 @@ def topological_sort(
# returns a class implementing the protocol corresponding to the Api
async def instantiate_provider(
provider: ProviderWithSpec,
deps: Dict[Api, Any],
inner_impls: Dict[str, Any],
deps: dict[Api, Any],
inner_impls: dict[str, Any],
dist_registry: DistributionRegistry,
):
protocols = api_protocol_map()
@ -391,8 +391,8 @@ def check_protocol_compliance(obj: Any, protocol: Any) -> None:
async def resolve_remote_stack_impls(
config: RemoteProviderConfig,
apis: List[str],
) -> Dict[Api, Any]:
apis: list[str],
) -> dict[Api, Any]:
protocols = api_protocol_map()
additional_protocols = additional_protocols_map()

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from typing import Any
from llama_stack.distribution.datatypes import RoutedProtocol
from llama_stack.distribution.store import DistributionRegistry
@ -23,7 +23,7 @@ from .routing_tables import (
async def get_routing_table_impl(
api: Api,
impls_by_provider_id: Dict[str, RoutedProtocol],
impls_by_provider_id: dict[str, RoutedProtocol],
_deps,
dist_registry: DistributionRegistry,
) -> Any:
@ -45,7 +45,7 @@ async def get_routing_table_impl(
return impl
async def get_auto_router_impl(api: Api, routing_table: RoutingTable, deps: Dict[str, Any]) -> Any:
async def get_auto_router_impl(api: Api, routing_table: RoutingTable, deps: dict[str, Any]) -> Any:
from .routers import (
DatasetIORouter,
EvalRouter,

View file

@ -6,12 +6,12 @@
import asyncio
import time
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
from collections.abc import AsyncGenerator, AsyncIterator
from typing import Annotated, Any
from openai.types.chat import ChatCompletionToolChoiceOptionParam as OpenAIChatCompletionToolChoiceOptionParam
from openai.types.chat import ChatCompletionToolParam as OpenAIChatCompletionToolParam
from pydantic import Field, TypeAdapter
from typing_extensions import Annotated
from llama_stack.apis.common.content_types import (
URL,
@ -100,9 +100,9 @@ class VectorIORouter(VectorIO):
self,
vector_db_id: str,
embedding_model: str,
embedding_dimension: Optional[int] = 384,
provider_id: Optional[str] = None,
provider_vector_db_id: Optional[str] = None,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> None:
logger.debug(f"VectorIORouter.register_vector_db: {vector_db_id}, {embedding_model}")
await self.routing_table.register_vector_db(
@ -116,8 +116,8 @@ class VectorIORouter(VectorIO):
async def insert_chunks(
self,
vector_db_id: str,
chunks: List[Chunk],
ttl_seconds: Optional[int] = None,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
logger.debug(
f"VectorIORouter.insert_chunks: {vector_db_id}, {len(chunks)} chunks, ttl_seconds={ttl_seconds}, chunk_ids={[chunk.metadata['document_id'] for chunk in chunks[:3]]}{' and more...' if len(chunks) > 3 else ''}",
@ -128,7 +128,7 @@ class VectorIORouter(VectorIO):
self,
vector_db_id: str,
query: InterleavedContent,
params: Optional[Dict[str, Any]] = None,
params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
logger.debug(f"VectorIORouter.query_chunks: {vector_db_id}")
return await self.routing_table.get_provider_impl(vector_db_id).query_chunks(vector_db_id, query, params)
@ -140,7 +140,7 @@ class InferenceRouter(Inference):
def __init__(
self,
routing_table: RoutingTable,
telemetry: Optional[Telemetry] = None,
telemetry: Telemetry | None = None,
) -> None:
logger.debug("Initializing InferenceRouter")
self.routing_table = routing_table
@ -160,10 +160,10 @@ class InferenceRouter(Inference):
async def register_model(
self,
model_id: str,
provider_model_id: Optional[str] = None,
provider_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
model_type: Optional[ModelType] = None,
provider_model_id: str | None = None,
provider_id: str | None = None,
metadata: dict[str, Any] | None = None,
model_type: ModelType | None = None,
) -> None:
logger.debug(
f"InferenceRouter.register_model: {model_id=} {provider_model_id=} {provider_id=} {metadata=} {model_type=}",
@ -176,7 +176,7 @@ class InferenceRouter(Inference):
completion_tokens: int,
total_tokens: int,
model: Model,
) -> List[MetricEvent]:
) -> list[MetricEvent]:
"""Constructs a list of MetricEvent objects containing token usage metrics.
Args:
@ -221,7 +221,7 @@ class InferenceRouter(Inference):
completion_tokens: int,
total_tokens: int,
model: Model,
) -> List[MetricInResponse]:
) -> list[MetricInResponse]:
metrics = self._construct_metrics(prompt_tokens, completion_tokens, total_tokens, model)
if self.telemetry:
for metric in metrics:
@ -230,9 +230,9 @@ class InferenceRouter(Inference):
async def _count_tokens(
self,
messages: List[Message] | InterleavedContent,
tool_prompt_format: Optional[ToolPromptFormat] = None,
) -> Optional[int]:
messages: list[Message] | InterleavedContent,
tool_prompt_format: ToolPromptFormat | None = None,
) -> int | None:
if isinstance(messages, list):
encoded = self.formatter.encode_dialog_prompt(messages, tool_prompt_format)
else:
@ -242,16 +242,16 @@ class InferenceRouter(Inference):
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = None,
tool_prompt_format: Optional[ToolPromptFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
messages: list[Message],
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
tools: list[ToolDefinition] | None = None,
tool_choice: ToolChoice | None = None,
tool_prompt_format: ToolPromptFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
tool_config: ToolConfig | None = None,
) -> ChatCompletionResponse | AsyncIterator[ChatCompletionResponseStreamChunk]:
logger.debug(
f"InferenceRouter.chat_completion: {model_id=}, {stream=}, {messages=}, {tools=}, {tool_config=}, {response_format=}",
)
@ -351,12 +351,12 @@ class InferenceRouter(Inference):
async def batch_chat_completion(
self,
model_id: str,
messages_batch: List[List[Message]],
tools: Optional[List[ToolDefinition]] = None,
tool_config: Optional[ToolConfig] = None,
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
logprobs: Optional[LogProbConfig] = None,
messages_batch: list[list[Message]],
tools: list[ToolDefinition] | None = None,
tool_config: ToolConfig | None = None,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
logprobs: LogProbConfig | None = None,
) -> BatchChatCompletionResponse:
logger.debug(
f"InferenceRouter.batch_chat_completion: {model_id=}, {len(messages_batch)=}, {sampling_params=}, {response_format=}, {logprobs=}",
@ -376,10 +376,10 @@ class InferenceRouter(Inference):
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
@ -439,10 +439,10 @@ class InferenceRouter(Inference):
async def batch_completion(
self,
model_id: str,
content_batch: List[InterleavedContent],
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
logprobs: Optional[LogProbConfig] = None,
content_batch: list[InterleavedContent],
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
logprobs: LogProbConfig | None = None,
) -> BatchCompletionResponse:
logger.debug(
f"InferenceRouter.batch_completion: {model_id=}, {len(content_batch)=}, {sampling_params=}, {response_format=}, {logprobs=}",
@ -453,10 +453,10 @@ class InferenceRouter(Inference):
async def embeddings(
self,
model_id: str,
contents: List[str] | List[InterleavedContentItem],
text_truncation: Optional[TextTruncation] = TextTruncation.none,
output_dimension: Optional[int] = None,
task_type: Optional[EmbeddingTaskType] = None,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
logger.debug(f"InferenceRouter.embeddings: {model_id}")
model = await self.routing_table.get_model(model_id)
@ -475,24 +475,24 @@ class InferenceRouter(Inference):
async def openai_completion(
self,
model: str,
prompt: Union[str, List[str], List[int], List[List[int]]],
best_of: Optional[int] = None,
echo: Optional[bool] = None,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[float] = None,
seed: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
stream: Optional[bool] = None,
stream_options: Optional[Dict[str, Any]] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
user: Optional[str] = None,
guided_choice: Optional[List[str]] = None,
prompt_logprobs: Optional[int] = None,
prompt: str | list[str] | list[int] | list[list[int]],
best_of: int | None = None,
echo: bool | None = None,
frequency_penalty: float | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_tokens: int | None = None,
n: int | None = None,
presence_penalty: float | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
top_p: float | None = None,
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
) -> OpenAICompletion:
logger.debug(
f"InferenceRouter.openai_completion: {model=}, {stream=}, {prompt=}",
@ -531,29 +531,29 @@ class InferenceRouter(Inference):
async def openai_chat_completion(
self,
model: str,
messages: Annotated[List[OpenAIMessageParam], Field(..., min_length=1)],
frequency_penalty: Optional[float] = None,
function_call: Optional[Union[str, Dict[str, Any]]] = None,
functions: Optional[List[Dict[str, Any]]] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
max_completion_tokens: Optional[int] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
parallel_tool_calls: Optional[bool] = None,
presence_penalty: Optional[float] = None,
response_format: Optional[OpenAIResponseFormatParam] = None,
seed: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
stream: Optional[bool] = None,
stream_options: Optional[Dict[str, Any]] = None,
temperature: Optional[float] = None,
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
tools: Optional[List[Dict[str, Any]]] = None,
top_logprobs: Optional[int] = None,
top_p: Optional[float] = None,
user: Optional[str] = None,
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
messages: Annotated[list[OpenAIMessageParam], Field(..., min_length=1)],
frequency_penalty: float | None = None,
function_call: str | dict[str, Any] | None = None,
functions: list[dict[str, Any]] | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_completion_tokens: int | None = None,
max_tokens: int | None = None,
n: int | None = None,
parallel_tool_calls: bool | None = None,
presence_penalty: float | None = None,
response_format: OpenAIResponseFormatParam | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
tool_choice: str | dict[str, Any] | None = None,
tools: list[dict[str, Any]] | None = None,
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
logger.debug(
f"InferenceRouter.openai_chat_completion: {model=}, {stream=}, {messages=}",
)
@ -602,7 +602,7 @@ class InferenceRouter(Inference):
provider = self.routing_table.get_provider_impl(model_obj.identifier)
return await provider.openai_chat_completion(**params)
async def health(self) -> Dict[str, HealthResponse]:
async def health(self) -> dict[str, HealthResponse]:
health_statuses = {}
timeout = 0.5
for provider_id, impl in self.routing_table.impls_by_provider_id.items():
@ -645,9 +645,9 @@ class SafetyRouter(Safety):
async def register_shield(
self,
shield_id: str,
provider_shield_id: Optional[str] = None,
provider_id: Optional[str] = None,
params: Optional[Dict[str, Any]] = None,
provider_shield_id: str | None = None,
provider_id: str | None = None,
params: dict[str, Any] | None = None,
) -> Shield:
logger.debug(f"SafetyRouter.register_shield: {shield_id}")
return await self.routing_table.register_shield(shield_id, provider_shield_id, provider_id, params)
@ -655,8 +655,8 @@ class SafetyRouter(Safety):
async def run_shield(
self,
shield_id: str,
messages: List[Message],
params: Dict[str, Any] = None,
messages: list[Message],
params: dict[str, Any] = None,
) -> RunShieldResponse:
logger.debug(f"SafetyRouter.run_shield: {shield_id}")
return await self.routing_table.get_provider_impl(shield_id).run_shield(
@ -686,8 +686,8 @@ class DatasetIORouter(DatasetIO):
self,
purpose: DatasetPurpose,
source: DataSource,
metadata: Optional[Dict[str, Any]] = None,
dataset_id: Optional[str] = None,
metadata: dict[str, Any] | None = None,
dataset_id: str | None = None,
) -> None:
logger.debug(
f"DatasetIORouter.register_dataset: {purpose=} {source=} {metadata=} {dataset_id=}",
@ -702,8 +702,8 @@ class DatasetIORouter(DatasetIO):
async def iterrows(
self,
dataset_id: str,
start_index: Optional[int] = None,
limit: Optional[int] = None,
start_index: int | None = None,
limit: int | None = None,
) -> PaginatedResponse:
logger.debug(
f"DatasetIORouter.iterrows: {dataset_id}, {start_index=} {limit=}",
@ -714,7 +714,7 @@ class DatasetIORouter(DatasetIO):
limit=limit,
)
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
async def append_rows(self, dataset_id: str, rows: list[dict[str, Any]]) -> None:
logger.debug(f"DatasetIORouter.append_rows: {dataset_id}, {len(rows)} rows")
return await self.routing_table.get_provider_impl(dataset_id).append_rows(
dataset_id=dataset_id,
@ -741,7 +741,7 @@ class ScoringRouter(Scoring):
async def score_batch(
self,
dataset_id: str,
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
scoring_functions: dict[str, ScoringFnParams | None] = None,
save_results_dataset: bool = False,
) -> ScoreBatchResponse:
logger.debug(f"ScoringRouter.score_batch: {dataset_id}")
@ -762,8 +762,8 @@ class ScoringRouter(Scoring):
async def score(
self,
input_rows: List[Dict[str, Any]],
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
input_rows: list[dict[str, Any]],
scoring_functions: dict[str, ScoringFnParams | None] = None,
) -> ScoreResponse:
logger.debug(f"ScoringRouter.score: {len(input_rows)} rows, {len(scoring_functions)} functions")
res = {}
@ -808,8 +808,8 @@ class EvalRouter(Eval):
async def evaluate_rows(
self,
benchmark_id: str,
input_rows: List[Dict[str, Any]],
scoring_functions: List[str],
input_rows: list[dict[str, Any]],
scoring_functions: list[str],
benchmark_config: BenchmarkConfig,
) -> EvaluateResponse:
logger.debug(f"EvalRouter.evaluate_rows: {benchmark_id}, {len(input_rows)} rows")
@ -863,8 +863,8 @@ class ToolRuntimeRouter(ToolRuntime):
async def query(
self,
content: InterleavedContent,
vector_db_ids: List[str],
query_config: Optional[RAGQueryConfig] = None,
vector_db_ids: list[str],
query_config: RAGQueryConfig | None = None,
) -> RAGQueryResult:
logger.debug(f"ToolRuntimeRouter.RagToolImpl.query: {vector_db_ids}")
return await self.routing_table.get_provider_impl("knowledge_search").query(
@ -873,7 +873,7 @@ class ToolRuntimeRouter(ToolRuntime):
async def insert(
self,
documents: List[RAGDocument],
documents: list[RAGDocument],
vector_db_id: str,
chunk_size_in_tokens: int = 512,
) -> None:
@ -904,7 +904,7 @@ class ToolRuntimeRouter(ToolRuntime):
logger.debug("ToolRuntimeRouter.shutdown")
pass
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> Any:
async def invoke_tool(self, tool_name: str, kwargs: dict[str, Any]) -> Any:
logger.debug(f"ToolRuntimeRouter.invoke_tool: {tool_name}")
return await self.routing_table.get_provider_impl(tool_name).invoke_tool(
tool_name=tool_name,
@ -912,7 +912,7 @@ class ToolRuntimeRouter(ToolRuntime):
)
async def list_runtime_tools(
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
self, tool_group_id: str | None = None, mcp_endpoint: URL | None = None
) -> ListToolDefsResponse:
logger.debug(f"ToolRuntimeRouter.list_runtime_tools: {tool_group_id}")
return await self.routing_table.get_provider_impl(tool_group_id).list_tools(tool_group_id, mcp_endpoint)

View file

@ -7,7 +7,7 @@
import logging
import time
import uuid
from typing import Any, Dict, List, Optional
from typing import Any
from pydantic import TypeAdapter
@ -106,20 +106,20 @@ async def unregister_object_from_provider(obj: RoutableObject, p: Any) -> None:
raise ValueError(f"Unregister not supported for {api}")
Registry = Dict[str, List[RoutableObjectWithProvider]]
Registry = dict[str, list[RoutableObjectWithProvider]]
class CommonRoutingTableImpl(RoutingTable):
def __init__(
self,
impls_by_provider_id: Dict[str, RoutedProtocol],
impls_by_provider_id: dict[str, RoutedProtocol],
dist_registry: DistributionRegistry,
) -> None:
self.impls_by_provider_id = impls_by_provider_id
self.dist_registry = dist_registry
async def initialize(self) -> None:
async def add_objects(objs: List[RoutableObjectWithProvider], provider_id: str, cls) -> None:
async def add_objects(objs: list[RoutableObjectWithProvider], provider_id: str, cls) -> None:
for obj in objs:
if cls is None:
obj.provider_id = provider_id
@ -154,7 +154,7 @@ class CommonRoutingTableImpl(RoutingTable):
for p in self.impls_by_provider_id.values():
await p.shutdown()
def get_provider_impl(self, routing_key: str, provider_id: Optional[str] = None) -> Any:
def get_provider_impl(self, routing_key: str, provider_id: str | None = None) -> Any:
def apiname_object():
if isinstance(self, ModelsRoutingTable):
return ("Inference", "model")
@ -192,7 +192,7 @@ class CommonRoutingTableImpl(RoutingTable):
raise ValueError(f"Provider not found for `{routing_key}`")
async def get_object_by_identifier(self, type: str, identifier: str) -> Optional[RoutableObjectWithProvider]:
async def get_object_by_identifier(self, type: str, identifier: str) -> RoutableObjectWithProvider | None:
# Get from disk registry
obj = await self.dist_registry.get(type, identifier)
if not obj:
@ -236,7 +236,7 @@ class CommonRoutingTableImpl(RoutingTable):
await self.dist_registry.register(obj)
return obj
async def get_all_with_type(self, type: str) -> List[RoutableObjectWithProvider]:
async def get_all_with_type(self, type: str) -> list[RoutableObjectWithProvider]:
objs = await self.dist_registry.get_all()
filtered_objs = [obj for obj in objs if obj.type == type]
@ -277,10 +277,10 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
async def register_model(
self,
model_id: str,
provider_model_id: Optional[str] = None,
provider_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
model_type: Optional[ModelType] = None,
provider_model_id: str | None = None,
provider_id: str | None = None,
metadata: dict[str, Any] | None = None,
model_type: ModelType | None = None,
) -> Model:
if provider_model_id is None:
provider_model_id = model_id
@ -328,9 +328,9 @@ class ShieldsRoutingTable(CommonRoutingTableImpl, Shields):
async def register_shield(
self,
shield_id: str,
provider_shield_id: Optional[str] = None,
provider_id: Optional[str] = None,
params: Optional[Dict[str, Any]] = None,
provider_shield_id: str | None = None,
provider_id: str | None = None,
params: dict[str, Any] | None = None,
) -> Shield:
if provider_shield_id is None:
provider_shield_id = shield_id
@ -368,9 +368,9 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
self,
vector_db_id: str,
embedding_model: str,
embedding_dimension: Optional[int] = 384,
provider_id: Optional[str] = None,
provider_vector_db_id: Optional[str] = None,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorDB:
if provider_vector_db_id is None:
provider_vector_db_id = vector_db_id
@ -423,8 +423,8 @@ class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
self,
purpose: DatasetPurpose,
source: DataSource,
metadata: Optional[Dict[str, Any]] = None,
dataset_id: Optional[str] = None,
metadata: dict[str, Any] | None = None,
dataset_id: str | None = None,
) -> Dataset:
if isinstance(source, dict):
if source["type"] == "uri":
@ -489,9 +489,9 @@ class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, ScoringFunctions):
scoring_fn_id: str,
description: str,
return_type: ParamType,
provider_scoring_fn_id: Optional[str] = None,
provider_id: Optional[str] = None,
params: Optional[ScoringFnParams] = None,
provider_scoring_fn_id: str | None = None,
provider_id: str | None = None,
params: ScoringFnParams | None = None,
) -> None:
if provider_scoring_fn_id is None:
provider_scoring_fn_id = scoring_fn_id
@ -528,10 +528,10 @@ class BenchmarksRoutingTable(CommonRoutingTableImpl, Benchmarks):
self,
benchmark_id: str,
dataset_id: str,
scoring_functions: List[str],
metadata: Optional[Dict[str, Any]] = None,
provider_benchmark_id: Optional[str] = None,
provider_id: Optional[str] = None,
scoring_functions: list[str],
metadata: dict[str, Any] | None = None,
provider_benchmark_id: str | None = None,
provider_id: str | None = None,
) -> None:
if metadata is None:
metadata = {}
@ -556,7 +556,7 @@ class BenchmarksRoutingTable(CommonRoutingTableImpl, Benchmarks):
class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
async def list_tools(self, toolgroup_id: Optional[str] = None) -> ListToolsResponse:
async def list_tools(self, toolgroup_id: str | None = None) -> ListToolsResponse:
tools = await self.get_all_with_type("tool")
if toolgroup_id:
tools = [tool for tool in tools if tool.toolgroup_id == toolgroup_id]
@ -578,8 +578,8 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
self,
toolgroup_id: str,
provider_id: str,
mcp_endpoint: Optional[URL] = None,
args: Optional[Dict[str, Any]] = None,
mcp_endpoint: URL | None = None,
args: dict[str, Any] | None = None,
) -> None:
tools = []
tool_defs = await self.impls_by_provider_id[provider_id].list_runtime_tools(toolgroup_id, mcp_endpoint)

View file

@ -7,7 +7,6 @@
import json
from abc import ABC, abstractmethod
from enum import Enum
from typing import Dict, List, Optional
from urllib.parse import parse_qs
import httpx
@ -22,7 +21,7 @@ logger = get_logger(name=__name__, category="auth")
class AuthResponse(BaseModel):
"""The format of the authentication response from the auth endpoint."""
access_attributes: Optional[AccessAttributes] = Field(
access_attributes: AccessAttributes | None = Field(
default=None,
description="""
Structured user attributes for attribute-based access control.
@ -44,7 +43,7 @@ class AuthResponse(BaseModel):
""",
)
message: Optional[str] = Field(
message: str | None = Field(
default=None, description="Optional message providing additional context about the authentication result."
)
@ -52,9 +51,9 @@ class AuthResponse(BaseModel):
class AuthRequestContext(BaseModel):
path: str = Field(description="The path of the request being authenticated")
headers: Dict[str, str] = Field(description="HTTP headers from the original request (excluding Authorization)")
headers: dict[str, str] = Field(description="HTTP headers from the original request (excluding Authorization)")
params: Dict[str, List[str]] = Field(
params: dict[str, list[str]] = Field(
description="Query parameters from the original request, parsed as dictionary of lists"
)
@ -76,14 +75,14 @@ class AuthProviderConfig(BaseModel):
"""Base configuration for authentication providers."""
provider_type: AuthProviderType = Field(..., description="Type of authentication provider")
config: Dict[str, str] = Field(..., description="Provider-specific configuration")
config: dict[str, str] = Field(..., description="Provider-specific configuration")
class AuthProvider(ABC):
"""Abstract base class for authentication providers."""
@abstractmethod
async def validate_token(self, token: str, scope: Optional[Dict] = None) -> Optional[AccessAttributes]:
async def validate_token(self, token: str, scope: dict | None = None) -> AccessAttributes | None:
"""Validate a token and return access attributes."""
pass
@ -96,7 +95,7 @@ class AuthProvider(ABC):
class KubernetesAuthProvider(AuthProvider):
"""Kubernetes authentication provider that validates tokens against the Kubernetes API server."""
def __init__(self, config: Dict[str, str]):
def __init__(self, config: dict[str, str]):
self.api_server_url = config["api_server_url"]
self.ca_cert_path = config.get("ca_cert_path")
self._client = None
@ -120,7 +119,7 @@ class KubernetesAuthProvider(AuthProvider):
self._client = ApiClient(configuration)
return self._client
async def validate_token(self, token: str, scope: Optional[Dict] = None) -> Optional[AccessAttributes]:
async def validate_token(self, token: str, scope: dict | None = None) -> AccessAttributes | None:
"""Validate a Kubernetes token and return access attributes."""
try:
client = await self._get_client()
@ -166,11 +165,11 @@ class KubernetesAuthProvider(AuthProvider):
class CustomAuthProvider(AuthProvider):
"""Custom authentication provider that uses an external endpoint."""
def __init__(self, config: Dict[str, str]):
def __init__(self, config: dict[str, str]):
self.endpoint = config["endpoint"]
self._client = None
async def validate_token(self, token: str, scope: Optional[Dict] = None) -> Optional[AccessAttributes]:
async def validate_token(self, token: str, scope: dict | None = None) -> AccessAttributes | None:
"""Validate a token using the custom authentication endpoint."""
if not self.endpoint:
raise ValueError("Authentication endpoint not configured")

View file

@ -6,7 +6,6 @@
import inspect
import re
from typing import Dict, List
from pydantic import BaseModel
@ -29,7 +28,7 @@ def toolgroup_protocol_map():
}
def get_all_api_endpoints() -> Dict[Api, List[ApiEndpoint]]:
def get_all_api_endpoints() -> dict[Api, list[ApiEndpoint]]:
apis = {}
protocols = api_protocol_map()

View file

@ -15,7 +15,7 @@ import warnings
from contextlib import asynccontextmanager
from importlib.metadata import version as parse_version
from pathlib import Path
from typing import Any, List, Optional, Union
from typing import Annotated, Any
import yaml
from fastapi import Body, FastAPI, HTTPException, Request
@ -24,7 +24,6 @@ from fastapi.exceptions import RequestValidationError
from fastapi.responses import JSONResponse, StreamingResponse
from openai import BadRequestError
from pydantic import BaseModel, ValidationError
from typing_extensions import Annotated
from llama_stack.distribution.datatypes import LoggingConfig, StackRunConfig
from llama_stack.distribution.distribution import builtin_automatically_routed_apis
@ -91,7 +90,7 @@ async def global_exception_handler(request: Request, exc: Exception):
return JSONResponse(status_code=http_exc.status_code, content={"error": {"detail": http_exc.detail}})
def translate_exception(exc: Exception) -> Union[HTTPException, RequestValidationError]:
def translate_exception(exc: Exception) -> HTTPException | RequestValidationError:
if isinstance(exc, ValidationError):
exc = RequestValidationError(exc.errors())
@ -315,7 +314,7 @@ class ClientVersionMiddleware:
return await self.app(scope, receive, send)
def main(args: Optional[argparse.Namespace] = None):
def main(args: argparse.Namespace | None = None):
"""Start the LlamaStack server."""
parser = argparse.ArgumentParser(description="Start the LlamaStack server.")
parser.add_argument(
@ -385,7 +384,7 @@ def main(args: Optional[argparse.Namespace] = None):
raise ValueError("Either --yaml-config or --template must be provided")
logger_config = None
with open(config_file, "r") as fp:
with open(config_file) as fp:
config_contents = yaml.safe_load(fp)
if isinstance(config_contents, dict) and (cfg := config_contents.get("logging_config")):
logger_config = LoggingConfig(**cfg)
@ -517,7 +516,7 @@ def main(args: Optional[argparse.Namespace] = None):
uvicorn.run(**uvicorn_config)
def extract_path_params(route: str) -> List[str]:
def extract_path_params(route: str) -> list[str]:
segments = route.split("/")
params = [seg[1:-1] for seg in segments if seg.startswith("{") and seg.endswith("}")]
# to handle path params like {param:path}

View file

@ -8,7 +8,7 @@ import importlib.resources
import os
import re
import tempfile
from typing import Any, Dict, Optional
from typing import Any
import yaml
@ -90,7 +90,7 @@ RESOURCES = [
]
async def register_resources(run_config: StackRunConfig, impls: Dict[Api, Any]):
async def register_resources(run_config: StackRunConfig, impls: dict[Api, Any]):
for rsrc, api, register_method, list_method in RESOURCES:
objects = getattr(run_config, rsrc)
if api not in impls:
@ -197,7 +197,7 @@ def validate_env_pair(env_pair: str) -> tuple[str, str]:
) from e
def add_internal_implementations(impls: Dict[Api, Any], run_config: StackRunConfig) -> None:
def add_internal_implementations(impls: dict[Api, Any], run_config: StackRunConfig) -> None:
"""Add internal implementations (inspect and providers) to the implementations dictionary.
Args:
@ -220,8 +220,8 @@ def add_internal_implementations(impls: Dict[Api, Any], run_config: StackRunConf
# Produces a stack of providers for the given run config. Not all APIs may be
# asked for in the run config.
async def construct_stack(
run_config: StackRunConfig, provider_registry: Optional[ProviderRegistry] = None
) -> Dict[Api, Any]:
run_config: StackRunConfig, provider_registry: ProviderRegistry | None = None
) -> dict[Api, Any]:
dist_registry, _ = await create_dist_registry(run_config.metadata_store, run_config.image_name)
impls = await resolve_impls(run_config, provider_registry or get_provider_registry(run_config), dist_registry)
@ -244,7 +244,7 @@ def get_stack_run_config_from_template(template: str) -> StackRunConfig:
def run_config_from_adhoc_config_spec(
adhoc_config_spec: str, provider_registry: Optional[ProviderRegistry] = None
adhoc_config_spec: str, provider_registry: ProviderRegistry | None = None
) -> StackRunConfig:
"""
Create an adhoc distribution from a list of API providers.

View file

@ -6,7 +6,7 @@
import asyncio
from contextlib import asynccontextmanager
from typing import Dict, List, Optional, Protocol, Tuple
from typing import Protocol
import pydantic
@ -20,13 +20,13 @@ logger = get_logger(__name__, category="core")
class DistributionRegistry(Protocol):
async def get_all(self) -> List[RoutableObjectWithProvider]: ...
async def get_all(self) -> list[RoutableObjectWithProvider]: ...
async def initialize(self) -> None: ...
async def get(self, identifier: str) -> Optional[RoutableObjectWithProvider]: ...
async def get(self, identifier: str) -> RoutableObjectWithProvider | None: ...
def get_cached(self, identifier: str) -> Optional[RoutableObjectWithProvider]: ...
def get_cached(self, identifier: str) -> RoutableObjectWithProvider | None: ...
async def update(self, obj: RoutableObjectWithProvider) -> RoutableObjectWithProvider: ...
@ -40,13 +40,13 @@ KEY_VERSION = "v8"
KEY_FORMAT = f"{REGISTER_PREFIX}:{KEY_VERSION}::" + "{type}:{identifier}"
def _get_registry_key_range() -> Tuple[str, str]:
def _get_registry_key_range() -> tuple[str, str]:
"""Returns the start and end keys for the registry range query."""
start_key = f"{REGISTER_PREFIX}:{KEY_VERSION}"
return start_key, f"{start_key}\xff"
def _parse_registry_values(values: List[str]) -> List[RoutableObjectWithProvider]:
def _parse_registry_values(values: list[str]) -> list[RoutableObjectWithProvider]:
"""Utility function to parse registry values into RoutableObjectWithProvider objects."""
all_objects = []
for value in values:
@ -67,16 +67,16 @@ class DiskDistributionRegistry(DistributionRegistry):
async def initialize(self) -> None:
pass
def get_cached(self, type: str, identifier: str) -> Optional[RoutableObjectWithProvider]:
def get_cached(self, type: str, identifier: str) -> RoutableObjectWithProvider | None:
# Disk registry does not have a cache
raise NotImplementedError("Disk registry does not have a cache")
async def get_all(self) -> List[RoutableObjectWithProvider]:
async def get_all(self) -> list[RoutableObjectWithProvider]:
start_key, end_key = _get_registry_key_range()
values = await self.kvstore.range(start_key, end_key)
return _parse_registry_values(values)
async def get(self, type: str, identifier: str) -> Optional[RoutableObjectWithProvider]:
async def get(self, type: str, identifier: str) -> RoutableObjectWithProvider | None:
json_str = await self.kvstore.get(KEY_FORMAT.format(type=type, identifier=identifier))
if not json_str:
return None
@ -113,7 +113,7 @@ class DiskDistributionRegistry(DistributionRegistry):
class CachedDiskDistributionRegistry(DiskDistributionRegistry):
def __init__(self, kvstore: KVStore):
super().__init__(kvstore)
self.cache: Dict[Tuple[str, str], RoutableObjectWithProvider] = {}
self.cache: dict[tuple[str, str], RoutableObjectWithProvider] = {}
self._initialized = False
self._initialize_lock = asyncio.Lock()
self._cache_lock = asyncio.Lock()
@ -147,15 +147,15 @@ class CachedDiskDistributionRegistry(DiskDistributionRegistry):
async def initialize(self) -> None:
await self._ensure_initialized()
def get_cached(self, type: str, identifier: str) -> Optional[RoutableObjectWithProvider]:
def get_cached(self, type: str, identifier: str) -> RoutableObjectWithProvider | None:
return self.cache.get((type, identifier), None)
async def get_all(self) -> List[RoutableObjectWithProvider]:
async def get_all(self) -> list[RoutableObjectWithProvider]:
await self._ensure_initialized()
async with self._locked_cache() as cache:
return list(cache.values())
async def get(self, type: str, identifier: str) -> Optional[RoutableObjectWithProvider]:
async def get(self, type: str, identifier: str) -> RoutableObjectWithProvider | None:
await self._ensure_initialized()
cache_key = (type, identifier)
@ -189,7 +189,7 @@ class CachedDiskDistributionRegistry(DiskDistributionRegistry):
async def create_dist_registry(
metadata_store: Optional[KVStoreConfig],
metadata_store: KVStoreConfig | None,
image_name: str,
) -> tuple[CachedDiskDistributionRegistry, KVStore]:
# instantiate kvstore for storing and retrieving distribution metadata

View file

@ -5,7 +5,6 @@
# the root directory of this source tree.
import os
from typing import Optional
from llama_stack_client import LlamaStackClient
@ -23,7 +22,7 @@ class LlamaStackApi:
},
)
def run_scoring(self, row, scoring_function_ids: list[str], scoring_params: Optional[dict]):
def run_scoring(self, row, scoring_function_ids: list[str], scoring_params: dict | None):
"""Run scoring on a single row"""
if not scoring_params:
scoring_params = {fn_id: None for fn_id in scoring_function_ids}

View file

@ -4,10 +4,10 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from typing import Any
def redact_sensitive_fields(data: Dict[str, Any]) -> Dict[str, Any]:
def redact_sensitive_fields(data: dict[str, Any]) -> dict[str, Any]:
"""Redact sensitive information from config before printing."""
sensitive_patterns = ["api_key", "api_token", "password", "secret"]
@ -18,7 +18,7 @@ def redact_sensitive_fields(data: Dict[str, Any]) -> Dict[str, Any]:
return [_redact_value(i) for i in v]
return v
def _redact_dict(d: Dict[str, Any]) -> Dict[str, Any]:
def _redact_dict(d: dict[str, Any]) -> dict[str, Any]:
result = {}
for k, v in d.items():
if any(pattern in k.lower() for pattern in sensitive_patterns):

View file

@ -4,14 +4,15 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import AsyncGenerator
from contextvars import ContextVar
from typing import AsyncGenerator, List, TypeVar
from typing import TypeVar
T = TypeVar("T")
def preserve_contexts_async_generator(
gen: AsyncGenerator[T, None], context_vars: List[ContextVar]
gen: AsyncGenerator[T, None], context_vars: list[ContextVar]
) -> AsyncGenerator[T, None]:
"""
Wraps an async generator to preserve context variables across iterations.

View file

@ -8,12 +8,11 @@ import inspect
import json
import logging
from enum import Enum
from typing import Any, List, Literal, Optional, Type, Union, get_args, get_origin
from typing import Annotated, Any, Literal, Union, get_args, get_origin
from pydantic import BaseModel
from pydantic.fields import FieldInfo
from pydantic_core import PydanticUndefinedType
from typing_extensions import Annotated
log = logging.getLogger(__name__)
@ -21,7 +20,7 @@ log = logging.getLogger(__name__)
def is_list_of_primitives(field_type):
"""Check if a field type is a List of primitive types."""
origin = get_origin(field_type)
if origin is List or origin is list:
if origin is list or origin is list:
args = get_args(field_type)
if len(args) == 1 and args[0] in (int, float, str, bool):
return True
@ -53,7 +52,7 @@ def get_non_none_type(field_type):
return next(arg for arg in get_args(field_type) if arg is not type(None))
def manually_validate_field(model: Type[BaseModel], field_name: str, value: Any):
def manually_validate_field(model: type[BaseModel], field_name: str, value: Any):
validators = model.__pydantic_decorators__.field_validators
for _name, validator in validators.items():
if field_name in validator.info.fields:
@ -126,7 +125,7 @@ def prompt_for_discriminated_union(
#
# doesn't support List[nested_class] yet or Dicts of any kind. needs a bunch of
# unit tests for coverage.
def prompt_for_config(config_type: type[BaseModel], existing_config: Optional[BaseModel] = None) -> BaseModel:
def prompt_for_config(config_type: type[BaseModel], existing_config: BaseModel | None = None) -> BaseModel:
"""
Recursively prompt the user for configuration values based on a Pydantic BaseModel.

View file

@ -7,7 +7,6 @@
import logging
import os
from logging.config import dictConfig
from typing import Dict, Optional
from rich.console import Console
from rich.errors import MarkupError
@ -33,7 +32,7 @@ CATEGORIES = [
]
# Initialize category levels with default level
_category_levels: Dict[str, int] = {category: DEFAULT_LOG_LEVEL for category in CATEGORIES}
_category_levels: dict[str, int] = {category: DEFAULT_LOG_LEVEL for category in CATEGORIES}
def config_to_category_levels(category: str, level: str):
@ -49,7 +48,7 @@ def config_to_category_levels(category: str, level: str):
Dict[str, int]: A dictionary mapping categories to their log levels.
"""
category_levels: Dict[str, int] = {}
category_levels: dict[str, int] = {}
level_value = logging._nameToLevel.get(str(level).upper())
if level_value is None:
logging.warning(f"Unknown log level '{level}' for category '{category}'. Falling back to default 'INFO'.")
@ -69,7 +68,7 @@ def config_to_category_levels(category: str, level: str):
return category_levels
def parse_yaml_config(yaml_config: LoggingConfig) -> Dict[str, int]:
def parse_yaml_config(yaml_config: LoggingConfig) -> dict[str, int]:
"""
Helper function to parse a yaml logging configuration found in the run.yaml
@ -86,7 +85,7 @@ def parse_yaml_config(yaml_config: LoggingConfig) -> Dict[str, int]:
return category_levels
def parse_environment_config(env_config: str) -> Dict[str, int]:
def parse_environment_config(env_config: str) -> dict[str, int]:
"""
Parse the LLAMA_STACK_LOGGING environment variable and return a dictionary of category log levels.
@ -131,7 +130,7 @@ class CustomRichHandler(RichHandler):
self.markup = original_markup
def setup_logging(category_levels: Dict[str, int], log_file: str | None) -> None:
def setup_logging(category_levels: dict[str, int], log_file: str | None) -> None:
"""
Configure logging based on the provided category log levels and an optional log file.
@ -211,7 +210,7 @@ def setup_logging(category_levels: Dict[str, int], log_file: str | None) -> None
def get_logger(
name: str, category: str = "uncategorized", config: Optional[LoggingConfig] | None = None
name: str, category: str = "uncategorized", config: LoggingConfig | None | None = None
) -> logging.LoggerAdapter:
"""
Returns a logger with the specified name and category.

View file

@ -7,14 +7,14 @@
import concurrent.futures
import re
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from typing import Any
import numpy as np
import torch
from fairscale.nn.model_parallel.initialize import get_model_parallel_rank, get_model_parallel_world_size
def map_mp_rank(old_mp_size: int, new_mp_size: int, new_mp_rank: int) -> List[int]:
def map_mp_rank(old_mp_size: int, new_mp_size: int, new_mp_rank: int) -> list[int]:
"""Map a new MP rank to a list of old MP ranks given a change in MP size."""
if new_mp_size % old_mp_size == 0:
# Read old MP shard and split it into smaller ones
@ -31,12 +31,12 @@ def map_mp_rank(old_mp_size: int, new_mp_size: int, new_mp_rank: int) -> List[in
def maybe_reshard_state_dict(
ckpt_paths: List[Path],
ckpt_paths: list[Path],
n_kv_heads: int,
moe_num_experts: Optional[int] = None,
map_location: Union[str, torch.device] = "cpu",
moe_num_experts: int | None = None,
map_location: str | torch.device = "cpu",
mmap: bool = True,
) -> Dict[str, torch.Tensor]:
) -> dict[str, torch.Tensor]:
if str(map_location) == "cpu":
torch.set_default_tensor_type(torch.BFloat16Tensor)
else:
@ -97,18 +97,18 @@ _MOE_WEIGHT_COLUMN_KEY = {"feed_forward.experts.moe_w_out_eF_D"}
def reshard_mp(
state_dicts: List[Dict[str, torch.Tensor]],
state_dicts: list[dict[str, torch.Tensor]],
size: int,
rank: int,
repeat_qk_qv: int = 1,
) -> Dict[str, torch.Tensor]:
) -> dict[str, torch.Tensor]:
"""
Reshard a list of state dicts into a single state dict given a change in MP size.
If the list has more than one state dict, we concatenate the values of the same
key across all state dicts. Otherwise, we just slice it for the current MP rank.
"""
def concat_or_chunk(tensors: List[torch.Tensor], dim: int) -> torch.Tensor:
def concat_or_chunk(tensors: list[torch.Tensor], dim: int) -> torch.Tensor:
if len(tensors) > 1:
return torch.cat(tensors, dim=dim)
return tensors[0].chunk(size, dim=dim)[rank].clone()
@ -144,7 +144,7 @@ def reshard_mp(
column_regex = re.compile("|".join(column_keys))
row_regex = re.compile("|".join(row_keys))
output: Dict[str, torch.Tensor] = {}
output: dict[str, torch.Tensor] = {}
with concurrent.futures.ThreadPoolExecutor() as executor:
# Note: only processes keys in the first state dict.
# Assumes keys are the same across all state dicts.
@ -154,7 +154,7 @@ def reshard_mp(
return output
def convert_moe_weights(state_dict: Dict[str, Any], num_experts: int) -> Dict[str, Any]:
def convert_moe_weights(state_dict: dict[str, Any], num_experts: int) -> dict[str, Any]:
routed_keys = _MOE_WEIGHT_ROW_KEY | _MOE_WEIGHT_COLUMN_KEY
routed_regex = re.compile("|".join(routed_keys))
keys = list(state_dict.keys())

View file

@ -7,10 +7,9 @@
import base64
from enum import Enum
from io import BytesIO
from typing import Any, Dict, List, Literal, Optional, Union
from typing import Annotated, Any, Literal
from pydantic import BaseModel, ConfigDict, Field, field_serializer, field_validator
from typing_extensions import Annotated
# The goal is that these set of types are relevant for all Llama models.
# That isn't the current state yet -- e.g., BuiltinTool is somewhat specific to
@ -31,21 +30,21 @@ class BuiltinTool(Enum):
code_interpreter = "code_interpreter"
Primitive = Union[str, int, float, bool, None]
RecursiveType = Union[Primitive, List[Primitive], Dict[str, Primitive]]
Primitive = str | int | float | bool | None
RecursiveType = Primitive | list[Primitive] | dict[str, Primitive]
class ToolCall(BaseModel):
call_id: str
tool_name: Union[BuiltinTool, str]
tool_name: BuiltinTool | str
# Plan is to deprecate the Dict in favor of a JSON string
# that is parsed on the client side instead of trying to manage
# the recursive type here.
# Making this a union so that client side can start prepping for this change.
# Eventually, we will remove both the Dict and arguments_json field,
# and arguments will just be a str
arguments: Union[str, Dict[str, RecursiveType]]
arguments_json: Optional[str] = None
arguments: str | dict[str, RecursiveType]
arguments_json: str | None = None
@field_validator("tool_name", mode="before")
@classmethod
@ -91,15 +90,15 @@ class StopReason(Enum):
class ToolParamDefinition(BaseModel):
param_type: str
description: Optional[str] = None
required: Optional[bool] = True
default: Optional[Any] = None
description: str | None = None
required: bool | None = True
default: Any | None = None
class ToolDefinition(BaseModel):
tool_name: Union[BuiltinTool, str]
description: Optional[str] = None
parameters: Optional[Dict[str, ToolParamDefinition]] = None
tool_name: BuiltinTool | str
description: str | None = None
parameters: dict[str, ToolParamDefinition] | None = None
@field_validator("tool_name", mode="before")
@classmethod
@ -119,7 +118,7 @@ class RawMediaItem(BaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True)
@field_serializer("data")
def serialize_data(self, data: Optional[bytes], _info):
def serialize_data(self, data: bytes | None, _info):
if data is None:
return None
return base64.b64encode(data).decode("utf-8")
@ -137,9 +136,9 @@ class RawTextItem(BaseModel):
text: str
RawContentItem = Annotated[Union[RawTextItem, RawMediaItem], Field(discriminator="type")]
RawContentItem = Annotated[RawTextItem | RawMediaItem, Field(discriminator="type")]
RawContent = str | RawContentItem | List[RawContentItem]
RawContent = str | RawContentItem | list[RawContentItem]
class RawMessage(BaseModel):
@ -147,17 +146,17 @@ class RawMessage(BaseModel):
content: RawContent
# This is for RAG but likely should be absorbed into content
context: Optional[RawContent] = None
context: RawContent | None = None
# These are for the output message coming from the assistant
stop_reason: Optional[StopReason] = None
tool_calls: List[ToolCall] = Field(default_factory=list)
stop_reason: StopReason | None = None
tool_calls: list[ToolCall] = Field(default_factory=list)
class GenerationResult(BaseModel):
token: int
text: str
logprobs: Optional[List[float]] = None
logprobs: list[float] | None = None
source: Literal["input"] | Literal["output"]

View file

@ -6,7 +6,6 @@
from dataclasses import dataclass
from enum import Enum
from typing import Optional
class QuantizationScheme(Enum):
@ -15,8 +14,8 @@ class QuantizationScheme(Enum):
@dataclass
class QuantizationArgs:
scheme: Optional[QuantizationScheme] = None
group_size: Optional[int] = None
scheme: QuantizationScheme | None = None
group_size: int | None = None
spinquant: bool = False
def __init__(self, **kwargs):
@ -39,10 +38,10 @@ class ModelArgs:
dim: int = 4096
n_layers: int = 32
n_heads: int = 32
n_kv_heads: Optional[int] = None
n_kv_heads: int | None = None
vocab_size: int = -1
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
ffn_dim_multiplier: Optional[float] = None
ffn_dim_multiplier: float | None = None
norm_eps: float = 1e-5
rope_theta: float = 500000
use_scaled_rope: bool = False
@ -55,8 +54,8 @@ class ModelArgs:
vision_max_num_chunks: int = 4
vision_num_cross_attention_layers: int = -1
quantization_args: Optional[QuantizationArgs] = None
lora_args: Optional[LoRAArgs] = None
quantization_args: QuantizationArgs | None = None
lora_args: LoRAArgs | None = None
def __init__(self, **kwargs):
for k, v in kwargs.items():

View file

@ -8,7 +8,6 @@ import io
import json
import uuid
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
from PIL import Image as PIL_Image
@ -29,14 +28,14 @@ from .tool_utils import ToolUtils
@dataclass
class VisionInput:
mask: List[List[int]]
images: List[PIL_Image.Image]
mask: list[list[int]]
images: list[PIL_Image.Image]
@dataclass
class LLMInput:
tokens: List[int]
vision: Optional[VisionInput] = None
tokens: list[int]
vision: VisionInput | None = None
def role_str(role: Role) -> str:
@ -50,7 +49,7 @@ def role_str(role: Role) -> str:
class ChatFormat:
possible_headers: Dict[Role, str]
possible_headers: dict[Role, str]
def __init__(self, tokenizer: Tokenizer):
self.tokenizer = tokenizer
@ -58,7 +57,7 @@ class ChatFormat:
self.possible_headers = {role: f"<|start_header_id|>{role_str(role)}<|end_header_id|>\n\n" for role in Role}
self.vision_token = self.tokenizer.special_tokens["<|image|>"]
def _encode_header(self, role: str) -> List[int]:
def _encode_header(self, role: str) -> list[int]:
tokens = []
tokens.append(self.tokenizer.special_tokens["<|start_header_id|>"])
tokens.extend(self.tokenizer.encode("ipython" if role == "tool" else role, bos=False, eos=False))
@ -70,7 +69,7 @@ class ChatFormat:
tokens, images = self._encode_content(content, bos=True)
return self._model_input_from_tokens_images(tokens, images)
def _encode_content(self, content: RawContent, bos: bool = False) -> Tuple[List[int], List[PIL_Image.Image]]:
def _encode_content(self, content: RawContent, bos: bool = False) -> tuple[list[int], list[PIL_Image.Image]]:
tokens = []
images = []
@ -107,7 +106,7 @@ class ChatFormat:
def encode_message(
self, message: RawMessage, tool_prompt_format: ToolPromptFormat
) -> Tuple[List[int], List[PIL_Image.Image]]:
) -> tuple[list[int], list[PIL_Image.Image]]:
tokens = self._encode_header(message.role)
images = []
@ -145,8 +144,8 @@ class ChatFormat:
def encode_dialog_prompt(
self,
messages: List[RawMessage],
tool_prompt_format: Optional[ToolPromptFormat] = None,
messages: list[RawMessage],
tool_prompt_format: ToolPromptFormat | None = None,
) -> LLMInput:
tool_prompt_format = tool_prompt_format or ToolPromptFormat.json
tokens = []
@ -163,7 +162,7 @@ class ChatFormat:
return self._model_input_from_tokens_images(tokens, images)
# TODO(this should be generic, not only for assistant messages)
def decode_assistant_message(self, tokens: List[int], stop_reason: StopReason) -> RawMessage:
def decode_assistant_message(self, tokens: list[int], stop_reason: StopReason) -> RawMessage:
content = self.tokenizer.decode(tokens)
return self.decode_assistant_message_from_content(content, stop_reason)
@ -234,7 +233,7 @@ class ChatFormat:
tool_calls=tool_calls,
)
def _model_input_from_tokens_images(self, tokens: List[int], images: List[PIL_Image.Image]) -> LLMInput:
def _model_input_from_tokens_images(self, tokens: list[int], images: list[PIL_Image.Image]) -> LLMInput:
vision_input = None
if len(images) > 0:
vision_input = VisionInput(
@ -249,9 +248,9 @@ class ChatFormat:
def create_vision_mask(
tokens: List[int],
tokens: list[int],
vision_token: int,
) -> List[List[int]]:
) -> list[list[int]]:
vision_token_locations = [i for i, token in enumerate(tokens) if token == vision_token]
if len(vision_token_locations) == 0:
return []

View file

@ -15,8 +15,8 @@ import json
import os
import sys
import time
from collections.abc import Callable, Generator
from pathlib import Path
from typing import Callable, Generator, List, Optional
import torch
import torch.nn.functional as F
@ -41,8 +41,8 @@ class Llama3:
ckpt_dir: str,
max_seq_len: int,
max_batch_size: int,
world_size: Optional[int] = None,
quantization_mode: Optional[QuantizationMode] = None,
world_size: int | None = None,
quantization_mode: QuantizationMode | None = None,
seed: int = 1,
device: str = "cuda",
):
@ -82,7 +82,7 @@ class Llama3:
ckpt_paths = sorted(Path(ckpt_dir).glob("*.pth"))
assert len(ckpt_paths) > 0, f"no checkpoint files found in {ckpt_dir}"
print(f"Loading a checkpoint (shards={len(ckpt_paths)}, current-mp-size={world_size})")
with open(Path(ckpt_dir) / "params.json", "r") as f:
with open(Path(ckpt_dir) / "params.json") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
@ -154,15 +154,15 @@ class Llama3:
@torch.inference_mode()
def generate(
self,
llm_inputs: List[LLMInput],
llm_inputs: list[LLMInput],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: Optional[int] = None,
max_gen_len: int | None = None,
logprobs: bool = False,
echo: bool = False,
print_model_input: bool = False,
logits_processor: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
) -> Generator[List[GenerationResult], None, None]:
logits_processor: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] | None = None,
) -> Generator[list[GenerationResult], None, None]:
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len:
max_gen_len = self.args.max_seq_len - 1
params = self.model.params
@ -302,13 +302,13 @@ class Llama3:
def completion(
self,
contents: List[RawContent],
contents: list[RawContent],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: Optional[int] = None,
max_gen_len: int | None = None,
logprobs: bool = False,
echo: bool = False,
) -> Generator[List[GenerationResult], None, None]:
) -> Generator[list[GenerationResult], None, None]:
model_inputs = [self.formatter.encode_content(c) for c in contents]
for result in self.generate(
model_inputs=model_inputs,
@ -324,14 +324,14 @@ class Llama3:
def chat_completion(
self,
messages_batch: List[List[RawMessage]],
messages_batch: list[list[RawMessage]],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: Optional[int] = None,
max_gen_len: int | None = None,
logprobs: bool = False,
tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json,
echo: bool = False,
) -> Generator[List[GenerationResult], None, None]:
) -> Generator[list[GenerationResult], None, None]:
model_inputs = [self.formatter.encode_dialog_prompt(messages) for messages in messages_batch]
for result in self.generate(
model_inputs=model_inputs,

View file

@ -12,7 +12,6 @@
# the top-level of this source tree.
from pathlib import Path
from typing import List, Optional
from termcolor import colored
@ -131,7 +130,7 @@ class LLama31Interface:
self.formatter = ChatFormat(self.tokenizer)
self.tool_prompt_format = tool_prompt_format
def get_tokens(self, messages: List[RawMessage]) -> List[int]:
def get_tokens(self, messages: list[RawMessage]) -> list[int]:
model_input = self.formatter.encode_dialog_prompt(
messages,
self.tool_prompt_format,
@ -149,10 +148,10 @@ class LLama31Interface:
def system_messages(
self,
builtin_tools: List[BuiltinTool],
custom_tools: List[ToolDefinition],
instruction: Optional[str] = None,
) -> List[RawMessage]:
builtin_tools: list[BuiltinTool],
custom_tools: list[ToolDefinition],
instruction: str | None = None,
) -> list[RawMessage]:
messages = []
default_gen = SystemDefaultGenerator()
@ -194,8 +193,8 @@ class LLama31Interface:
self,
content: str,
stop_reason: StopReason,
tool_call: Optional[ToolCall] = None,
) -> List[RawMessage]:
tool_call: ToolCall | None = None,
) -> list[RawMessage]:
tool_calls = []
if tool_call:
tool_calls.append(tool_call)
@ -208,7 +207,7 @@ class LLama31Interface:
)
]
def user_message(self, content: str) -> List[RawMessage]:
def user_message(self, content: str) -> list[RawMessage]:
return [RawMessage(role="user", content=content)]
def display_message_as_tokens(self, message: RawMessage) -> None:
@ -228,7 +227,7 @@ class LLama31Interface:
print("\n", end="")
def list_jinja_templates() -> List[Template]:
def list_jinja_templates() -> list[Template]:
return TEMPLATES

View file

@ -5,7 +5,6 @@
# the root directory of this source tree.
import math
from typing import Optional, Tuple
import fairscale.nn.model_parallel.initialize as fs_init
import torch
@ -80,7 +79,7 @@ def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
) -> tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
@ -162,7 +161,7 @@ class Attention(nn.Module):
x: torch.Tensor,
start_pos: int,
freqs_cis: torch.Tensor,
mask: Optional[torch.Tensor],
mask: torch.Tensor | None,
):
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
@ -204,7 +203,7 @@ class FeedForward(nn.Module):
dim: int,
hidden_dim: int,
multiple_of: int,
ffn_dim_multiplier: Optional[float],
ffn_dim_multiplier: float | None,
):
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
@ -243,7 +242,7 @@ class TransformerBlock(nn.Module):
x: torch.Tensor,
start_pos: int,
freqs_cis: torch.Tensor,
mask: Optional[torch.Tensor],
mask: torch.Tensor | None,
):
h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask)
out = h + self.feed_forward(self.ffn_norm(h))

View file

@ -14,7 +14,7 @@
import math
from collections import defaultdict
from logging import getLogger
from typing import Any, Optional, Set, Tuple
from typing import Any
import torch
import torchvision.transforms as tv
@ -26,7 +26,7 @@ IMAGE_RES = 224
logger = getLogger()
class VariableSizeImageTransform(object):
class VariableSizeImageTransform:
"""
This class accepts images of any size and dynamically resize, pads and chunks it
based on the image aspect ratio and the number of image chunks we allow.
@ -75,7 +75,7 @@ class VariableSizeImageTransform(object):
self.resample = tv.InterpolationMode.BILINEAR
@staticmethod
def get_factors(n: int) -> Set[int]:
def get_factors(n: int) -> set[int]:
"""
Calculate all factors of a given number, i.e. a dividor that leaves
no remainder. For example, if n=12, it will return {1, 2, 3, 4, 6, 12}.
@ -145,9 +145,9 @@ class VariableSizeImageTransform(object):
@staticmethod
def get_max_res_without_distortion(
image_size: Tuple[int, int],
target_size: Tuple[int, int],
) -> Tuple[int, int]:
image_size: tuple[int, int],
target_size: tuple[int, int],
) -> tuple[int, int]:
"""
Determines the maximum resolution to which an image can be resized to without distorting its
aspect ratio, based on the target resolution.
@ -198,8 +198,8 @@ class VariableSizeImageTransform(object):
def resize_without_distortion(
self,
image: torch.Tensor,
target_size: Tuple[int, int],
max_upscaling_size: Optional[int],
target_size: tuple[int, int],
max_upscaling_size: int | None,
) -> torch.Tensor:
"""
Used to resize an image to target_resolution, without distortion.
@ -261,10 +261,10 @@ class VariableSizeImageTransform(object):
def get_best_fit(
self,
image_size: Tuple[int, int],
image_size: tuple[int, int],
possible_resolutions: torch.Tensor,
resize_to_max_canvas: bool = False,
) -> Tuple[int, int]:
) -> tuple[int, int]:
"""
Determines the best canvas possible from a list of possible resolutions to, without distortion,
resize an image to.
@ -364,7 +364,7 @@ class VariableSizeImageTransform(object):
max_num_chunks: int,
normalize_img: bool = True,
resize_to_max_canvas: bool = False,
) -> Tuple[Any, Any]:
) -> tuple[Any, Any]:
"""
Args:
image (PIL.Image): Image to be resized.

View file

@ -6,8 +6,9 @@
import logging
import math
from collections.abc import Callable
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from typing import Any
import fairscale.nn.model_parallel.initialize as fs_init
import torch
@ -104,9 +105,9 @@ class ColumnParallelConv2dPatch(torch.nn.Module):
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
stride: Union[int, Tuple[int, int]],
bias: Optional[bool] = False,
kernel_size: int | tuple[int, int],
stride: int | tuple[int, int],
bias: bool | None = False,
) -> None:
super().__init__()
if isinstance(kernel_size, int):
@ -390,13 +391,13 @@ class VisionEncoder(nn.Module):
def load_hook(
self,
state_dict: Dict[str, Any],
state_dict: dict[str, Any],
prefix: str,
local_metadata: Dict[str, Any],
local_metadata: dict[str, Any],
strict: bool = True,
missing_keys: List[str] = None,
unexpected_keys: List[str] = None,
error_msgs: List[str] = None,
missing_keys: list[str] = None,
unexpected_keys: list[str] = None,
error_msgs: list[str] = None,
return_state_dict: bool = False,
) -> None:
orig_pos_embed = state_dict.get(prefix + "positional_embedding")
@ -641,7 +642,7 @@ class FeedForward(nn.Module):
dim: int,
hidden_dim: int,
multiple_of: int,
ffn_dim_multiplier: Optional[float],
ffn_dim_multiplier: float | None,
):
"""
Initialize the FeedForward module.
@ -983,7 +984,7 @@ class CrossAttentionTransformerBlock(torch.nn.Module):
self,
x: torch.Tensor,
xattn_mask: torch.Tensor,
full_text_row_masked_out_mask: Tuple[torch.Tensor, torch.Tensor],
full_text_row_masked_out_mask: tuple[torch.Tensor, torch.Tensor],
xattn_cache: torch.Tensor,
) -> torch.Tensor:
_attn_out = self.attention(
@ -1144,7 +1145,7 @@ class CrossAttentionTransformerText(torch.nn.Module):
def _init_fusion_schedule(
self,
num_layers: int,
) -> List[int]:
) -> list[int]:
llama_layers = list(range(self.n_llama_layers))
# uniformly spread the layers
@ -1231,7 +1232,7 @@ class CrossAttentionTransformerText(torch.nn.Module):
text_dtype,
vision_tokens,
cross_attention_masks,
) -> Tuple[Tensor, Tensor]:
) -> tuple[Tensor, Tensor]:
assert vision_tokens is not None, "Vision tokens must be provided"
vision_seqlen = vision_tokens.shape[3]
assert vision_tokens.shape[1] == cross_attention_masks.shape[2], (
@ -1280,11 +1281,11 @@ class CrossAttentionTransformer(torch.nn.Module):
def compute_vision_tokens_masks(
self,
batch_images: List[List[PIL_Image.Image]],
batch_masks: List[List[List[int]]],
batch_images: list[list[PIL_Image.Image]],
batch_masks: list[list[list[int]]],
total_len: int,
device: torch.device,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
skip_vision_encoder = False
assert len(batch_images) == len(batch_masks), "Images and masks must have the same length"
@ -1371,11 +1372,11 @@ class CrossAttentionTransformer(torch.nn.Module):
def _stack_images(
images: List[List[PIL_Image.Image]],
images: list[list[PIL_Image.Image]],
max_num_chunks: int,
image_res: int,
max_num_images: int,
) -> Tuple[torch.Tensor, List[int]]:
) -> tuple[torch.Tensor, list[int]]:
"""
Takes a list of list of images and stacks them into a tensor.
This function is needed since images can be of completely
@ -1400,8 +1401,8 @@ def _stack_images(
def _pad_masks(
all_masks: List[List[List[int]]],
all_num_chunks: List[List[int]],
all_masks: list[list[list[int]]],
all_num_chunks: list[list[int]],
total_len: int,
max_num_chunks: int,
) -> torch.Tensor:

View file

@ -12,7 +12,7 @@
# the top-level of this source tree.
from dataclasses import dataclass
from typing import Any, Dict, List
from typing import Any
from jinja2 import Template
@ -20,7 +20,7 @@ from jinja2 import Template
@dataclass
class PromptTemplate:
template: str
data: Dict[str, Any]
data: dict[str, Any]
def render(self):
template = Template(self.template)
@ -35,5 +35,5 @@ class PromptTemplateGeneratorBase:
def gen(self, *args, **kwargs) -> PromptTemplate:
raise NotImplementedError()
def data_examples(self) -> List[Any]:
def data_examples(self) -> list[Any]:
raise NotImplementedError()

View file

@ -13,7 +13,7 @@
import textwrap
from datetime import datetime
from typing import Any, List, Optional
from typing import Any
from llama_stack.apis.inference import (
BuiltinTool,
@ -39,12 +39,12 @@ class SystemDefaultGenerator(PromptTemplateGeneratorBase):
},
)
def data_examples(self) -> List[Any]:
def data_examples(self) -> list[Any]:
return [None]
class BuiltinToolGenerator(PromptTemplateGeneratorBase):
def _tool_breakdown(self, tools: List[ToolDefinition]):
def _tool_breakdown(self, tools: list[ToolDefinition]):
builtin_tools, custom_tools = [], []
for dfn in tools:
if isinstance(dfn.tool_name, BuiltinTool):
@ -54,7 +54,7 @@ class BuiltinToolGenerator(PromptTemplateGeneratorBase):
return builtin_tools, custom_tools
def gen(self, tools: List[ToolDefinition]) -> PromptTemplate:
def gen(self, tools: list[ToolDefinition]) -> PromptTemplate:
builtin_tools, custom_tools = self._tool_breakdown(tools)
template_str = textwrap.dedent(
"""
@ -75,7 +75,7 @@ class BuiltinToolGenerator(PromptTemplateGeneratorBase):
},
)
def data_examples(self) -> List[List[ToolDefinition]]:
def data_examples(self) -> list[list[ToolDefinition]]:
return [
# builtin tools
[
@ -91,7 +91,7 @@ class BuiltinToolGenerator(PromptTemplateGeneratorBase):
class JsonCustomToolGenerator(PromptTemplateGeneratorBase):
def gen(self, custom_tools: List[ToolDefinition]) -> PromptTemplate:
def gen(self, custom_tools: list[ToolDefinition]) -> PromptTemplate:
template_str = textwrap.dedent(
"""
Answer the user's question by making use of the following functions if needed.
@ -137,7 +137,7 @@ class JsonCustomToolGenerator(PromptTemplateGeneratorBase):
{"custom_tools": [t.model_dump() for t in custom_tools]},
)
def data_examples(self) -> List[List[ToolDefinition]]:
def data_examples(self) -> list[list[ToolDefinition]]:
return [
[
ToolDefinition(
@ -161,7 +161,7 @@ class JsonCustomToolGenerator(PromptTemplateGeneratorBase):
class FunctionTagCustomToolGenerator(PromptTemplateGeneratorBase):
def gen(self, custom_tools: List[ToolDefinition]) -> PromptTemplate:
def gen(self, custom_tools: list[ToolDefinition]) -> PromptTemplate:
template_str = textwrap.dedent(
"""
You have access to the following functions:
@ -199,7 +199,7 @@ class FunctionTagCustomToolGenerator(PromptTemplateGeneratorBase):
{"custom_tools": [t.model_dump() for t in custom_tools]},
)
def data_examples(self) -> List[List[ToolDefinition]]:
def data_examples(self) -> list[list[ToolDefinition]]:
return [
[
ToolDefinition(
@ -238,14 +238,14 @@ class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
""".strip("\n")
)
def gen(self, custom_tools: List[ToolDefinition], system_prompt: Optional[str] = None) -> PromptTemplate:
def gen(self, custom_tools: list[ToolDefinition], system_prompt: str | None = None) -> PromptTemplate:
system_prompt = system_prompt or self.DEFAULT_PROMPT
return PromptTemplate(
system_prompt,
{"function_description": self._gen_function_description(custom_tools)},
)
def _gen_function_description(self, custom_tools: List[ToolDefinition]) -> PromptTemplate:
def _gen_function_description(self, custom_tools: list[ToolDefinition]) -> PromptTemplate:
template_str = textwrap.dedent(
"""
Here is a list of functions in JSON format that you can invoke.
@ -291,7 +291,7 @@ class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
{"tools": [t.model_dump() for t in custom_tools]},
).render()
def data_examples(self) -> List[List[ToolDefinition]]:
def data_examples(self) -> list[list[ToolDefinition]]:
return [
[
ToolDefinition(

View file

@ -12,7 +12,6 @@
# the top-level of this source tree.
import textwrap
from typing import Optional
from .base import PromptTemplate, PromptTemplateGeneratorBase
@ -21,8 +20,8 @@ class ToolResponseGenerator(PromptTemplateGeneratorBase):
def gen(
self,
status: str,
stdout: Optional[str] = None,
stderr: Optional[str] = None,
stdout: str | None = None,
stderr: str | None = None,
):
assert status in [
"success",

View file

@ -6,7 +6,7 @@
# type: ignore
import os
from typing import Any, Dict, List, Optional, cast
from typing import Any, cast
import torch
from fairscale.nn.model_parallel.initialize import get_model_parallel_rank
@ -37,9 +37,9 @@ def swiglu_wrapper(
def convert_to_quantized_model(
model: Transformer | CrossAttentionTransformer,
checkpoint_dir: str,
quantization_mode: Optional[str] = None,
fp8_activation_scale_ub: Optional[float] = 1200.0,
device: Optional[torch.device] = None,
quantization_mode: str | None = None,
fp8_activation_scale_ub: float | None = 1200.0,
device: torch.device | None = None,
) -> Transformer | CrossAttentionTransformer:
if quantization_mode == QuantizationMode.fp8_mixed:
return convert_to_fp8_quantized_model(model, checkpoint_dir, fp8_activation_scale_ub, device)
@ -52,8 +52,8 @@ def convert_to_quantized_model(
def convert_to_fp8_quantized_model(
model: Transformer,
checkpoint_dir: str,
fp8_activation_scale_ub: Optional[float] = 1200.0,
device: Optional[torch.device] = None,
fp8_activation_scale_ub: float | None = 1200.0,
device: torch.device | None = None,
) -> Transformer:
# Move weights to GPU with quantization
fp8_scales_path = os.path.join(checkpoint_dir, f"fp8_scales_{get_model_parallel_rank()}.pt")
@ -122,8 +122,8 @@ class Int8DynActInt4WeightLinearLoRA(Int8DynActInt4WeightLinear):
precision: torch.dtype = torch.float32,
scales_precision: torch.dtype = torch.float32,
# LoRA parameters
lora_rank: Optional[int] = None,
lora_scale: Optional[float] = None,
lora_rank: int | None = None,
lora_scale: float | None = None,
) -> None:
super().__init__(
in_features,
@ -134,8 +134,8 @@ class Int8DynActInt4WeightLinearLoRA(Int8DynActInt4WeightLinear):
precision=precision,
scales_precision=scales_precision,
)
self.lora_scale: Optional[float] = None
self.adaptor: Optional[nn.Sequential] = None
self.lora_scale: float | None = None
self.adaptor: nn.Sequential | None = None
if lora_rank is not None:
assert lora_scale is not None, "Please specify lora scale for LoRA."
# Low-rank adaptation. See paper for more details: https://arxiv.org/abs/2106.09685
@ -147,13 +147,13 @@ class Int8DynActInt4WeightLinearLoRA(Int8DynActInt4WeightLinear):
def load_hook(
self,
state_dict: Dict[str, Any],
state_dict: dict[str, Any],
prefix: str,
local_metadata: Dict[str, Any],
local_metadata: dict[str, Any],
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
"""A hook to load the quantized weights from the state dict."""
if prefix + "zeros" not in state_dict:
@ -191,13 +191,13 @@ class Int8WeightEmbedding(torch.nn.Embedding):
def load_hook(
self,
state_dict: Dict[str, Any],
state_dict: dict[str, Any],
prefix: str,
local_metadata: Dict[str, Any],
local_metadata: dict[str, Any],
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
"""A hook to load the quantized embedding weight and scales from the state dict."""
weights = state_dict.pop(prefix + "weight")
@ -221,13 +221,13 @@ class Int8WeightLinear(torch.nn.Linear):
def load_hook(
self,
state_dict: Dict[str, Any],
state_dict: dict[str, Any],
prefix: str,
local_metadata: Dict[str, Any],
local_metadata: dict[str, Any],
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
"""A hook to load the quantized linear weight and scales from the state dict."""
weights = state_dict.pop(prefix + "weight")
@ -238,8 +238,8 @@ class Int8WeightLinear(torch.nn.Linear):
def _prepare_model_int4_weight_int8_dynamic_activation(
model: torch.nn.Module,
group_size: int,
lora_rank: Optional[int],
lora_scale: Optional[float],
lora_rank: int | None,
lora_scale: float | None,
):
"""Prepare the model for int4 weight and int8 dynamic activation quantization.
@ -265,7 +265,7 @@ def _prepare_model_int4_weight_int8_dynamic_activation(
)
del module
setattr(model, module_name, quantized_module)
elif isinstance(module, (ColumnParallelLinear, RowParallelLinear, nn.Linear)):
elif isinstance(module, ColumnParallelLinear | RowParallelLinear | nn.Linear):
quantized_module = Int8DynActInt4WeightLinearLoRA(
in_features=module.in_features,
out_features=module.out_features,
@ -286,7 +286,7 @@ def _prepare_model_int4_weight_int8_dynamic_activation(
def convert_to_int4_quantized_model(
model: Transformer | CrossAttentionTransformer,
checkpoint_dir: str,
device: Optional[torch.device] = None,
device: torch.device | None = None,
) -> Transformer | CrossAttentionTransformer:
"""Convert the model to int4 quantized model."""
model_args = model.params

View file

@ -5,18 +5,11 @@
# the root directory of this source tree.
import os
from collections.abc import Collection, Iterator, Sequence, Set
from logging import getLogger
from pathlib import Path
from typing import (
AbstractSet,
Collection,
Dict,
Iterator,
List,
Literal,
Optional,
Sequence,
Union,
cast,
)
@ -44,7 +37,7 @@ class Tokenizer:
Tokenizing and encoding/decoding text using the Tiktoken tokenizer.
"""
special_tokens: Dict[str, int]
special_tokens: dict[str, int]
num_reserved_special_tokens = 256
@ -116,9 +109,9 @@ class Tokenizer:
*,
bos: bool,
eos: bool,
allowed_special: Optional[Union[Literal["all"], AbstractSet[str]]] = None,
disallowed_special: Union[Literal["all"], Collection[str]] = (),
) -> List[int]:
allowed_special: Literal["all"] | Set[str] | None = None,
disallowed_special: Literal["all"] | Collection[str] = (),
) -> list[int]:
"""
Encodes a string into a list of token IDs.
@ -151,7 +144,7 @@ class Tokenizer:
s[i : i + TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS
)
)
t: List[int] = []
t: list[int] = []
for substr in substrs:
t.extend(
self.model.encode(
@ -177,7 +170,7 @@ class Tokenizer:
str: The decoded string.
"""
# Typecast is safe here. Tiktoken doesn't do anything list-related with the sequence.
return self.model.decode(cast(List[int], t))
return self.model.decode(cast(list[int], t))
@staticmethod
def _split_whitespaces_or_nonwhitespaces(s: str, max_consecutive_slice_len: int) -> Iterator[str]:

View file

@ -6,7 +6,6 @@
import json
import re
from typing import Optional, Tuple
from llama_stack.log import get_logger
@ -172,7 +171,7 @@ class ToolUtils:
return match is not None
@staticmethod
def maybe_extract_builtin_tool_call(message_body: str) -> Optional[Tuple[str, str]]:
def maybe_extract_builtin_tool_call(message_body: str) -> tuple[str, str] | None:
# Find the first match in the text
match = re.search(BUILTIN_TOOL_PATTERN, message_body)
@ -185,7 +184,7 @@ class ToolUtils:
return None
@staticmethod
def maybe_extract_custom_tool_call(message_body: str) -> Optional[Tuple[str, str]]:
def maybe_extract_custom_tool_call(message_body: str) -> tuple[str, str] | None:
# NOTE: Custom function too calls are still experimental
# Sometimes, response is of the form
# {"type": "function", "name": "function_name", "parameters": {...}
@ -252,7 +251,7 @@ class ToolUtils:
def format_value(value: RecursiveType) -> str:
if isinstance(value, str):
return f'"{value}"'
elif isinstance(value, (int, float, bool)) or value is None:
elif isinstance(value, int | float | bool) or value is None:
return str(value)
elif isinstance(value, list):
return f"[{', '.join(format_value(v) for v in value)}]"

View file

@ -12,7 +12,6 @@
# the top-level of this source tree.
import textwrap
from typing import List
from llama_stack.models.llama.datatypes import (
BuiltinTool,
@ -73,7 +72,7 @@ def wolfram_alpha_response():
)
def usecases() -> List[UseCase | str]:
def usecases() -> list[UseCase | str]:
return [
textwrap.dedent(
"""

View file

@ -12,7 +12,6 @@
# the top-level of this source tree.
import textwrap
from typing import List
from llama_stack.models.llama.datatypes import (
BuiltinTool,
@ -74,7 +73,7 @@ def wolfram_alpha_response():
)
def usecases() -> List[UseCase | str]:
def usecases() -> list[UseCase | str]:
return [
textwrap.dedent(
"""

View file

@ -5,7 +5,6 @@
# the root directory of this source tree.
from enum import Enum
from typing import Optional
from pydantic import BaseModel, model_validator
@ -15,8 +14,8 @@ class QuantizationScheme(Enum):
class QuantizationArgs(BaseModel):
scheme: Optional[QuantizationScheme] = None
group_size: Optional[int] = None
scheme: QuantizationScheme | None = None
group_size: int | None = None
spinquant: bool = False
@ -58,32 +57,32 @@ class ModelArgs(BaseModel):
dim: int = -1
n_layers: int = -1
n_heads: int = -1
n_kv_heads: Optional[int] = None
head_dim: Optional[int] = None
n_kv_heads: int | None = None
head_dim: int | None = None
vocab_size: int = -1
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
ffn_dim_multiplier: Optional[float] = None
ffn_exp: Optional[float] = None
ffn_dim_multiplier: float | None = None
ffn_exp: float | None = None
norm_eps: float = 1e-5
attention_chunk_size: Optional[int] = None
attention_chunk_size: int | None = None
rope_theta: float = 500000
use_scaled_rope: bool = False
rope_scaling_factor: Optional[float] = None
rope_high_freq_factor: Optional[float] = None
rope_scaling_factor: float | None = None
rope_high_freq_factor: float | None = None
nope_layer_interval: Optional[int] = None # No position encoding in every n layers
nope_layer_interval: int | None = None # No position encoding in every n layers
use_qk_norm: bool = False
# Set to True to enable inference-time temperature tuning (useful for very long context)
attn_temperature_tuning: bool = False
floor_scale: float = 8192.0
attn_scale: float = 0.1
vision_args: Optional[VisionArgs] = None
moe_args: Optional[MoEArgs] = None
quantization_args: Optional[QuantizationArgs] = None
lora_args: Optional[LoRAArgs] = None
vision_args: VisionArgs | None = None
moe_args: MoEArgs | None = None
quantization_args: QuantizationArgs | None = None
lora_args: LoRAArgs | None = None
max_batch_size: int = 32
max_seq_len: int = 2048

View file

@ -8,7 +8,6 @@ import io
import json
import uuid
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import torch
from PIL import Image as PIL_Image
@ -46,10 +45,10 @@ def role_str(role: Role) -> str:
class TransformedImage:
image_tiles: torch.Tensor
# is the aspect ratio needed anywhere?
aspect_ratio: Tuple[int, int]
aspect_ratio: tuple[int, int]
def convert_image_to_rgb(image: PIL_Image.Image, bg: Tuple[int, int, int] = (255, 255, 255)) -> PIL_Image.Image:
def convert_image_to_rgb(image: PIL_Image.Image, bg: tuple[int, int, int] = (255, 255, 255)) -> PIL_Image.Image:
if image.mode == "RGBA":
image.load() # for png.split()
new_img = PIL_Image.new("RGB", image.size, bg)
@ -59,12 +58,12 @@ def convert_image_to_rgb(image: PIL_Image.Image, bg: Tuple[int, int, int] = (255
class ChatFormat:
possible_headers: Dict[Role, str]
possible_headers: dict[Role, str]
def __init__(
self,
tokenizer: Tokenizer,
vision_args: Optional[VisionArgs] = None,
vision_args: VisionArgs | None = None,
max_num_chunks: int = 16,
):
self.tokenizer = tokenizer
@ -81,7 +80,7 @@ class ChatFormat:
vision_args.image_size.width, vision_args.image_size.height
)
def _encode_header(self, role: str) -> List[int]:
def _encode_header(self, role: str) -> list[int]:
tokens = []
tokens.append(self.tokenizer.special_tokens["<|header_start|>"])
@ -98,7 +97,7 @@ class ChatFormat:
def _encode_image(
self,
transformed_image: TransformedImage,
) -> List[int]:
) -> list[int]:
assert self.vision_args is not None, "The model is not vision-enabled"
image_tensor = transformed_image.image_tiles
@ -140,7 +139,7 @@ class ChatFormat:
return tokens
def _encode_content(self, content: RawContent, bos: bool = False) -> Tuple[List[int], List[TransformedImage]]:
def _encode_content(self, content: RawContent, bos: bool = False) -> tuple[list[int], list[TransformedImage]]:
tokens = []
tranformed_images = []
@ -189,7 +188,7 @@ class ChatFormat:
def encode_message(
self, message: RawMessage, tool_prompt_format: ToolPromptFormat
) -> Tuple[List[int], List[TransformedImage]]:
) -> tuple[list[int], list[TransformedImage]]:
tokens = self._encode_header(message.role)
images = []
@ -223,7 +222,7 @@ class ChatFormat:
def encode_dialog_prompt(
self,
messages: List[RawMessage],
messages: list[RawMessage],
tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json,
) -> LLMInput:
tokens = []
@ -240,7 +239,7 @@ class ChatFormat:
return self._model_input_from_tokens_images(tokens, images)
# TODO(this should be generic, not only for assistant messages)
def decode_assistant_message(self, tokens: List[int], stop_reason: StopReason) -> RawMessage:
def decode_assistant_message(self, tokens: list[int], stop_reason: StopReason) -> RawMessage:
content = self.tokenizer.decode(tokens)
return self.decode_assistant_message_from_content(content, stop_reason)
@ -312,7 +311,7 @@ class ChatFormat:
tool_calls=tool_calls,
)
def _model_input_from_tokens_images(self, tokens: List[int], images: List[TransformedImage]) -> LLMInput:
def _model_input_from_tokens_images(self, tokens: list[int], images: list[TransformedImage]) -> LLMInput:
return LLMInput(
tokens=tokens,
images=[x.image_tiles for x in images] if len(images) > 0 else None,

View file

@ -5,7 +5,6 @@
# the root directory of this source tree.
from dataclasses import dataclass
from typing import List, Optional, Union
import torch
@ -30,7 +29,7 @@ class LLMInput:
tokens: torch.Tensor
# images are already pre-processed (resized, tiled, etc.)
images: Optional[List[torch.Tensor]] = None
images: list[torch.Tensor] | None = None
@dataclass
@ -45,8 +44,8 @@ class TransformerInput:
# tokens_position defines the position of the tokens in each batch,
# - when it is a tensor ([batch_size,]), it is the start position of the tokens in each batch
# - when it is an int, the start position are the same for all batches
tokens_position: Union[torch.Tensor, int]
image_embedding: Optional[MaskedEmbedding] = None
tokens_position: torch.Tensor | int
image_embedding: MaskedEmbedding | None = None
@dataclass

View file

@ -11,7 +11,7 @@
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
from typing import Any, Dict, List
from typing import Any
from fairscale.nn.model_parallel.layers import ColumnParallelLinear, RowParallelLinear
from fairscale.nn.model_parallel.mappings import reduce_from_model_parallel_region
@ -36,13 +36,13 @@ class FeedForward(nn.Module):
def load_hook(
self,
state_dict: Dict[str, Any],
state_dict: dict[str, Any],
prefix: str,
local_metadata: Dict[str, Any],
local_metadata: dict[str, Any],
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
if prefix + "mlp.fc1_weight" in state_dict:
w1, w3 = state_dict.pop(prefix + "mlp.fc1_weight").chunk(2, dim=0)

View file

@ -10,8 +10,8 @@ import json
import os
import sys
import time
from collections.abc import Callable, Generator
from pathlib import Path
from typing import Callable, Generator, List, Optional
import torch
import torch.nn.functional as F
@ -38,8 +38,8 @@ class Llama4:
ckpt_dir: str,
max_seq_len: int,
max_batch_size: int,
world_size: Optional[int] = None,
quantization_mode: Optional[QuantizationMode] = None,
world_size: int | None = None,
quantization_mode: QuantizationMode | None = None,
seed: int = 1,
):
if not torch.distributed.is_initialized():
@ -63,7 +63,7 @@ class Llama4:
ckpt_paths = sorted(Path(ckpt_dir).glob("*.pth"))
assert len(ckpt_paths) > 0, f"no checkpoint files found in {ckpt_dir}"
print(f"Loading a checkpoint (shards={len(ckpt_paths)}, current-mp-size={world_size})")
with open(Path(ckpt_dir) / "params.json", "r") as f:
with open(Path(ckpt_dir) / "params.json") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
@ -117,15 +117,15 @@ class Llama4:
@torch.inference_mode()
def generate(
self,
llm_inputs: List[LLMInput],
llm_inputs: list[LLMInput],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: Optional[int] = None,
max_gen_len: int | None = None,
logprobs: bool = False,
echo: bool = False,
print_model_input: bool = False,
logits_processor: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
) -> Generator[List[GenerationResult], None, None]:
logits_processor: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] | None = None,
) -> Generator[list[GenerationResult], None, None]:
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.model.args.max_seq_len:
max_gen_len = self.model.args.max_seq_len - 1
@ -245,13 +245,13 @@ class Llama4:
def completion(
self,
contents: List[RawContent],
contents: list[RawContent],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: Optional[int] = None,
max_gen_len: int | None = None,
logprobs: bool = False,
echo: bool = False,
) -> Generator[List[GenerationResult], None, None]:
) -> Generator[list[GenerationResult], None, None]:
llm_inputs = [self.formatter.encode_content(c) for c in contents]
for result in self.generate(
llm_inputs=llm_inputs,
@ -267,13 +267,13 @@ class Llama4:
def chat_completion(
self,
messages_batch: List[List[RawMessage]],
messages_batch: list[list[RawMessage]],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: Optional[int] = None,
max_gen_len: int | None = None,
logprobs: bool = False,
echo: bool = False,
) -> Generator[List[GenerationResult], None, None]:
) -> Generator[list[GenerationResult], None, None]:
llm_inputs = [self.formatter.encode_dialog_prompt(messages) for messages in messages_batch]
for result in self.generate(
llm_inputs=llm_inputs,

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
import math
from typing import Any, Dict, List, Optional, Tuple
from typing import Any
import fairscale.nn.model_parallel.initialize as fs_init
import torch
@ -89,7 +89,7 @@ def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
) -> tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
@ -174,13 +174,13 @@ class Attention(nn.Module):
def load_hook(
self,
state_dict: Dict[str, Any],
state_dict: dict[str, Any],
prefix: str,
local_metadata: Dict[str, Any],
local_metadata: dict[str, Any],
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
if prefix + "wqkv.weight" in state_dict:
wqkv = state_dict.pop(prefix + "wqkv.weight")
@ -200,7 +200,7 @@ class Attention(nn.Module):
x: torch.Tensor,
start_pos: int,
freqs_cis: torch.Tensor,
mask: Optional[torch.Tensor] = None,
mask: torch.Tensor | None = None,
):
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
@ -288,13 +288,13 @@ class TransformerBlock(nn.Module):
def load_hook(
self,
state_dict: Dict[str, Any],
state_dict: dict[str, Any],
prefix: str,
local_metadata: Dict[str, Any],
local_metadata: dict[str, Any],
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
if prefix + "attention.wqkv.layer_norm_weight" in state_dict:
state_dict[prefix + "attention_norm.weight"] = state_dict.pop(prefix + "attention.wqkv.layer_norm_weight")
@ -318,8 +318,8 @@ class TransformerBlock(nn.Module):
x: torch.Tensor,
start_pos: int,
freqs_cis: torch.Tensor,
global_attn_mask: Optional[torch.Tensor],
local_attn_mask: Optional[torch.Tensor],
global_attn_mask: torch.Tensor | None,
local_attn_mask: torch.Tensor | None,
):
# The iRoPE architecture uses global attention mask for NoPE layers or
# if chunked local attention is not used
@ -374,13 +374,13 @@ class Transformer(nn.Module):
def load_hook(
self,
state_dict: Dict[str, Any],
state_dict: dict[str, Any],
prefix: str,
local_metadata: Dict[str, Any],
local_metadata: dict[str, Any],
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
if prefix + "rope.freqs" in state_dict:
state_dict.pop(prefix + "rope.freqs")

View file

@ -6,7 +6,7 @@
# ruff: noqa: N806
# pyre-strict
from typing import Any, Dict, List
from typing import Any
import fairscale.nn.model_parallel.initialize as fs_init
import torch
@ -63,13 +63,13 @@ class Experts(nn.Module):
def load_hook(
self,
state_dict: Dict[str, Any],
state_dict: dict[str, Any],
prefix: str,
local_metadata: Dict[str, Any],
local_metadata: dict[str, Any],
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
self.prefix = prefix
if prefix + "moe_w_in_eD_F" in state_dict:
@ -158,13 +158,13 @@ class MoE(torch.nn.Module):
def load_hook(
self,
state_dict: Dict[str, Any],
state_dict: dict[str, Any],
prefix: str,
local_metadata: Dict[str, Any],
local_metadata: dict[str, Any],
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
if prefix + "w_in_shared_FD.weight" in state_dict:
state_dict[prefix + "shared_expert.w1.weight"] = state_dict.pop(prefix + "w_in_shared_FD.weight")
@ -210,5 +210,5 @@ class MoE(torch.nn.Module):
def divide_exact(numerator: int, denominator: int) -> int:
assert numerator % denominator == 0, "{} is not divisible by {}".format(numerator, denominator)
assert numerator % denominator == 0, f"{numerator} is not divisible by {denominator}"
return numerator // denominator

View file

@ -13,7 +13,6 @@
import math
from collections import defaultdict
from typing import Optional, Set, Tuple
import torch
import torchvision.transforms as tv
@ -52,7 +51,7 @@ class ResizeNormalizeImageTransform:
return self.tv_transform(image)
class VariableSizeImageTransform(object):
class VariableSizeImageTransform:
"""
This class accepts images of any size and dynamically resize, pads and chunks it
based on the image aspect ratio and the number of image chunks we allow.
@ -100,7 +99,7 @@ class VariableSizeImageTransform(object):
self.resample = tv.InterpolationMode.BILINEAR
@staticmethod
def get_factors(n: int) -> Set[int]:
def get_factors(n: int) -> set[int]:
"""
Calculate all factors of a given number, i.e. a dividor that leaves
no remainder. For example, if n=12, it will return {1, 2, 3, 4, 6, 12}.
@ -170,9 +169,9 @@ class VariableSizeImageTransform(object):
@staticmethod
def get_max_res_without_distortion(
image_size: Tuple[int, int],
target_size: Tuple[int, int],
) -> Tuple[int, int]:
image_size: tuple[int, int],
target_size: tuple[int, int],
) -> tuple[int, int]:
"""
Determines the maximum resolution to which an image can be resized to without distorting its
aspect ratio, based on the target resolution.
@ -223,8 +222,8 @@ class VariableSizeImageTransform(object):
def resize_without_distortion(
self,
image: torch.Tensor,
target_size: Tuple[int, int],
max_upscaling_size: Optional[int],
target_size: tuple[int, int],
max_upscaling_size: int | None,
) -> torch.Tensor:
"""
Used to resize an image to target_resolution, without distortion.
@ -289,10 +288,10 @@ class VariableSizeImageTransform(object):
def get_best_fit(
self,
image_size: Tuple[int, int],
image_size: tuple[int, int],
possible_resolutions: torch.Tensor,
resize_to_max_canvas: bool = False,
) -> Tuple[int, int]:
) -> tuple[int, int]:
"""
Determines the best canvas possible from a list of possible resolutions to, without distortion,
resize an image to.
@ -392,7 +391,7 @@ class VariableSizeImageTransform(object):
max_num_chunks: int,
normalize_img: bool = True,
resize_to_max_canvas: bool = False,
) -> Tuple[torch.Tensor, Tuple[int, int]]:
) -> tuple[torch.Tensor, tuple[int, int]]:
"""
Args:
image (PIL.Image): Image to be resized.

View file

@ -12,7 +12,6 @@
# the top-level of this source tree.
import textwrap
from typing import List, Optional
from llama_stack.apis.inference import ToolDefinition, ToolParamDefinition
from llama_stack.models.llama.llama3.prompt_templates.base import (
@ -67,14 +66,14 @@ class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
""".strip("\n")
)
def gen(self, custom_tools: List[ToolDefinition], system_prompt: Optional[str] = None) -> PromptTemplate:
def gen(self, custom_tools: list[ToolDefinition], system_prompt: str | None = None) -> PromptTemplate:
system_prompt = system_prompt or self.DEFAULT_PROMPT
return PromptTemplate(
system_prompt,
{"function_description": self._gen_function_description(custom_tools)},
)
def _gen_function_description(self, custom_tools: List[ToolDefinition]) -> PromptTemplate:
def _gen_function_description(self, custom_tools: list[ToolDefinition]) -> PromptTemplate:
template_str = textwrap.dedent(
"""
Here is a list of functions in JSON format that you can invoke.
@ -120,7 +119,7 @@ class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
{"tools": [t.model_dump() for t in custom_tools]},
).render()
def data_examples(self) -> List[List[ToolDefinition]]:
def data_examples(self) -> list[list[ToolDefinition]]:
return [
[
ToolDefinition(

View file

@ -7,7 +7,6 @@
import textwrap
from io import BytesIO
from pathlib import Path
from typing import List
from llama_stack.models.llama.llama4.prompt_templates.system_prompts import (
PythonListCustomToolGenerator,
@ -23,7 +22,7 @@ from ..prompt_format import (
THIS_DIR = Path(__file__).parent
def usecases(base_model: bool = False) -> List[UseCase | str]:
def usecases(base_model: bool = False) -> list[UseCase | str]:
with open(THIS_DIR.parent / "resources/small_dog.jpg", "rb") as f:
img_small_dog = f.read()
with open(THIS_DIR.parent / "resources/dog.jpg", "rb") as f:

View file

@ -6,7 +6,7 @@
import logging
import os
from typing import Callable, Optional
from collections.abc import Callable
import torch
from fairscale.nn.model_parallel.initialize import get_model_parallel_rank
@ -45,8 +45,8 @@ def experts_batched_swiglu_wrapper(
def convert_to_quantized_model(
model: Transformer,
checkpoint_dir: str,
quantization_mode: Optional[str] = None,
fp8_activation_scale_ub: Optional[float] = 1200.0,
quantization_mode: str | None = None,
fp8_activation_scale_ub: float | None = 1200.0,
use_rich_progress: bool = True,
) -> Transformer:
from ...quantize_impls import (
@ -213,7 +213,7 @@ def logging_callbacks(
)
task_id = progress.add_task("[blue]Converting layers...", total=total_blocks, status="Starting")
def update_status(message: Optional[str], completed: Optional[int] = None) -> None:
def update_status(message: str | None, completed: int | None = None) -> None:
if use_rich_progress:
if message is not None:
progress.update(task_id, status=message)

View file

@ -5,18 +5,11 @@
# the root directory of this source tree.
import os
from collections.abc import Collection, Iterator, Sequence, Set
from logging import getLogger
from pathlib import Path
from typing import (
AbstractSet,
Collection,
Dict,
Iterator,
List,
Literal,
Optional,
Sequence,
Union,
cast,
)
@ -114,7 +107,7 @@ class Tokenizer:
Tokenizing and encoding/decoding text using the Tiktoken tokenizer.
"""
special_tokens: Dict[str, int]
special_tokens: dict[str, int]
num_reserved_special_tokens = 2048
@ -182,9 +175,9 @@ class Tokenizer:
*,
bos: bool,
eos: bool,
allowed_special: Optional[Union[Literal["all"], AbstractSet[str]]] = None,
disallowed_special: Union[Literal["all"], Collection[str]] = (),
) -> List[int]:
allowed_special: Literal["all"] | Set[str] | None = None,
disallowed_special: Literal["all"] | Collection[str] = (),
) -> list[int]:
"""
Encodes a string into a list of token IDs.
@ -217,7 +210,7 @@ class Tokenizer:
s[i : i + TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS
)
)
t: List[int] = []
t: list[int] = []
for substr in substrs:
t.extend(
self.model.encode(
@ -243,7 +236,7 @@ class Tokenizer:
str: The decoded string.
"""
# Typecast is safe here. Tiktoken doesn't do anything list-related with the sequence.
return self.model.decode(cast(List[int], t))
return self.model.decode(cast(list[int], t))
@staticmethod
def _split_whitespaces_or_nonwhitespaces(s: str, max_consecutive_slice_len: int) -> Iterator[str]:

View file

@ -5,7 +5,8 @@
# the root directory of this source tree.
import math
from typing import Any, Callable, Dict, List
from collections.abc import Callable
from typing import Any
import torch
import torch.nn as nn
@ -136,13 +137,13 @@ class VisionEmbeddings(torch.nn.Module):
def load_hook(
self,
state_dict: Dict[str, Any],
state_dict: dict[str, Any],
prefix: str,
local_metadata: Dict[str, Any],
local_metadata: dict[str, Any],
strict: bool = True,
missing_keys: List[str] = None,
unexpected_keys: List[str] = None,
error_msgs: List[str] = None,
missing_keys: list[str] = None,
unexpected_keys: list[str] = None,
error_msgs: list[str] = None,
return_state_dict: bool = False,
) -> None:
original_sd = self.state_dict()
@ -163,7 +164,7 @@ class VisionEmbeddings(torch.nn.Module):
# each image is a tensor of shape [num_tiles, C, H, W]
def forward(
self,
image_batch: List[List[torch.Tensor]],
image_batch: list[list[torch.Tensor]],
image_mask: torch.Tensor,
h_ref: torch.Tensor,
) -> torch.Tensor:

View file

@ -4,7 +4,8 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from collections.abc import Callable
from typing import Any
import fairscale.nn.model_parallel.initialize as fs_init
import torch
@ -42,9 +43,9 @@ class ColumnParallelConv2dPatch(torch.nn.Module):
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
stride: Union[int, Tuple[int, int]],
bias: Optional[bool] = False,
kernel_size: int | tuple[int, int],
stride: int | tuple[int, int],
bias: bool | None = False,
) -> None:
super().__init__()
if isinstance(kernel_size, int):
@ -134,15 +135,15 @@ class _TransformerBlock(nn.Module):
def attention(
self,
x: torch.Tensor,
freq_cis: Optional[torch.Tensor] = None,
freq_cis: torch.Tensor | None = None,
):
return self.attn(x=x, start_pos=0, freqs_cis=freq_cis)
def forward(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor] = None,
freq_cis: Optional[torch.Tensor] = None,
mask: torch.Tensor | None = None,
freq_cis: torch.Tensor | None = None,
):
_gate_attn = 1 if not self.gated else self.gate_attn.tanh()
_gate_ffn = 1 if not self.gated else self.gate_ffn.tanh()
@ -210,8 +211,8 @@ class PackingIndex:
class VisionEncoder(nn.Module):
def __init__(
self,
image_size: Tuple[int, int],
patch_size: Tuple[int, int],
image_size: tuple[int, int],
patch_size: tuple[int, int],
dim: int,
layers: int,
heads: int,
@ -299,13 +300,13 @@ class VisionEncoder(nn.Module):
def load_hook(
self,
state_dict: Dict[str, Any],
state_dict: dict[str, Any],
prefix: str,
local_metadata: Dict[str, Any],
local_metadata: dict[str, Any],
strict: bool = True,
missing_keys: List[str] = None,
unexpected_keys: List[str] = None,
error_msgs: List[str] = None,
missing_keys: list[str] = None,
unexpected_keys: list[str] = None,
error_msgs: list[str] = None,
return_state_dict: bool = False,
) -> None:
orig_pos_embed = state_dict.get(prefix + "positional_embedding")

View file

@ -14,7 +14,6 @@
import json
import textwrap
from pathlib import Path
from typing import List
from pydantic import BaseModel, Field
@ -44,7 +43,7 @@ class TextCompletionContent(BaseModel):
class UseCase(BaseModel):
title: str = ""
description: str = ""
dialogs: List[List[RawMessage] | TextCompletionContent | str] = Field(default_factory=list)
dialogs: list[list[RawMessage] | TextCompletionContent | str] = Field(default_factory=list)
notes: str = ""
tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json
max_gen_len: int = 512

View file

@ -7,7 +7,6 @@
# type: ignore
import collections
import logging
from typing import Optional, Tuple, Type, Union
log = logging.getLogger(__name__)
@ -27,7 +26,7 @@ class Fp8ScaledWeights:
# TODO: Ugly trick so torch allows us to replace parameters
# with our custom Fp8Weights instance. Do this properly.
@property
def __class__(self) -> Type[nn.parameter.Parameter]:
def __class__(self) -> type[nn.parameter.Parameter]:
return nn.Parameter
@property
@ -51,7 +50,7 @@ class Int4ScaledWeights:
# TODO: Ugly trick so torch allows us to replace parameters
# with our custom Int4Weights instance. Do this properly.
@property
def __class__(self) -> Type[nn.parameter.Parameter]:
def __class__(self) -> type[nn.parameter.Parameter]:
return nn.Parameter
@property
@ -74,7 +73,7 @@ class Int4Weights(
def int4_row_quantize(
x: torch.Tensor,
group_size: int = 128,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
n_bit = 4 # Number of target bits.
to_quant = x.reshape(-1, group_size).to(torch.float)
@ -115,8 +114,8 @@ def pack_int4(x: torch.Tensor) -> torch.Tensor:
def bmm_nt(
x: Tensor,
w: Union[Fp8RowwiseWeights, Int4Weights],
num_tokens: Optional[Tensor] = None,
w: Fp8RowwiseWeights | Int4Weights,
num_tokens: Tensor | None = None,
) -> Tensor:
if isinstance(w, Fp8ScaledWeights):
xq, x_scale = torch.ops.fbgemm.quantize_fp8_per_row(x, num_tokens, w.activation_scale_ub)
@ -129,10 +128,10 @@ def bmm_nt(
def ffn_swiglu(
x: Tensor,
w1: Union[Fp8RowwiseWeights, Int4Weights],
w3: Union[Fp8RowwiseWeights, Int4Weights],
w2: Union[Fp8RowwiseWeights, Int4Weights],
num_tokens: Optional[Tensor] = None,
w1: Fp8RowwiseWeights | Int4Weights,
w3: Fp8RowwiseWeights | Int4Weights,
w2: Fp8RowwiseWeights | Int4Weights,
num_tokens: Tensor | None = None,
is_memory_bounded: bool = False,
) -> Tensor:
if (isinstance(w1, Fp8ScaledWeights) and isinstance(w3, Fp8ScaledWeights) and isinstance(w2, Fp8ScaledWeights)) or (
@ -158,7 +157,7 @@ def ffn_swiglu(
def quantize_fp8(
w: Tensor,
fp8_activation_scale_ub: float,
output_device: Optional[torch.device] = None,
output_device: torch.device | None = None,
) -> Fp8RowwiseWeights:
"""Quantize [n, k] weight tensor.
@ -184,7 +183,7 @@ def quantize_fp8(
@torch.inference_mode()
def quantize_int4(
w: Tensor,
output_device: Optional[torch.device] = None,
output_device: torch.device | None = None,
) -> Int4Weights:
"""Quantize [n, k/2] weight tensor.
@ -213,7 +212,7 @@ def load_fp8(
w: Tensor,
w_scale: Tensor,
fp8_activation_scale_ub: float,
output_device: Optional[torch.device] = None,
output_device: torch.device | None = None,
) -> Fp8RowwiseWeights:
"""Load FP8 [n, k] weight tensor.
@ -239,7 +238,7 @@ def load_int4(
w: Tensor,
scale: Tensor,
zero_point: Tensor,
output_device: Optional[torch.device] = None,
output_device: torch.device | None = None,
) -> Int4Weights:
"""Load INT4 [n, k/2] weight tensor.
@ -256,9 +255,9 @@ def load_int4(
def fc_dynamic(
x: Tensor,
w: Union[Fp8RowwiseWeights, Int4Weights],
activation_scale_ub: Optional[Tensor] = None,
num_tokens: Optional[Tensor] = None,
w: Fp8RowwiseWeights | Int4Weights,
activation_scale_ub: Tensor | None = None,
num_tokens: Tensor | None = None,
is_memory_bounded: bool = False,
) -> Tensor:
"""
@ -275,11 +274,11 @@ def fc_dynamic(
def ffn_swiglu_dynamic(
x: Tensor,
w1: Union[Fp8RowwiseWeights, Int4Weights],
w3: Union[Fp8RowwiseWeights, Int4Weights],
w2: Union[Fp8RowwiseWeights, Int4Weights],
activation_scale_ub: Optional[Tensor] = None,
num_tokens: Optional[Tensor] = None,
w1: Fp8RowwiseWeights | Int4Weights,
w3: Fp8RowwiseWeights | Int4Weights,
w2: Fp8RowwiseWeights | Int4Weights,
activation_scale_ub: Tensor | None = None,
num_tokens: Tensor | None = None,
is_memory_bounded: bool = False,
) -> Tensor:
assert x.dim() == 3 or x.dim() == 2

View file

@ -6,7 +6,6 @@
from dataclasses import dataclass
from functools import lru_cache
from typing import List, Optional
from .sku_types import (
CheckpointQuantizationFormat,
@ -19,14 +18,14 @@ LLAMA2_VOCAB_SIZE = 32000
LLAMA3_VOCAB_SIZE = 128256
def resolve_model(descriptor: str) -> Optional[Model]:
def resolve_model(descriptor: str) -> Model | None:
for m in all_registered_models():
if descriptor in (m.descriptor(), m.huggingface_repo):
return m
return None
def all_registered_models() -> List[Model]:
def all_registered_models() -> list[Model]:
return (
llama2_family()
+ llama3_family()
@ -38,48 +37,48 @@ def all_registered_models() -> List[Model]:
)
def llama2_family() -> List[Model]:
def llama2_family() -> list[Model]:
return [
*llama2_base_models(),
*llama2_instruct_models(),
]
def llama3_family() -> List[Model]:
def llama3_family() -> list[Model]:
return [
*llama3_base_models(),
*llama3_instruct_models(),
]
def llama3_1_family() -> List[Model]:
def llama3_1_family() -> list[Model]:
return [
*llama3_1_base_models(),
*llama3_1_instruct_models(),
]
def llama3_2_family() -> List[Model]:
def llama3_2_family() -> list[Model]:
return [
*llama3_2_base_models(),
*llama3_2_instruct_models(),
]
def llama3_3_family() -> List[Model]:
def llama3_3_family() -> list[Model]:
return [
*llama3_3_instruct_models(),
]
def llama4_family() -> List[Model]:
def llama4_family() -> list[Model]:
return [
*llama4_base_models(),
*llama4_instruct_models(),
]
def llama4_base_models() -> List[Model]:
def llama4_base_models() -> list[Model]:
return [
Model(
core_model_id=CoreModelId.llama4_scout_17b_16e,
@ -98,7 +97,7 @@ def llama4_base_models() -> List[Model]:
]
def llama4_instruct_models() -> List[Model]:
def llama4_instruct_models() -> list[Model]:
return [
Model(
core_model_id=CoreModelId.llama4_scout_17b_16e_instruct,
@ -126,7 +125,7 @@ def llama4_instruct_models() -> List[Model]:
]
def llama2_base_models() -> List[Model]:
def llama2_base_models() -> list[Model]:
return [
Model(
core_model_id=CoreModelId.llama2_7b,
@ -185,7 +184,7 @@ def llama2_base_models() -> List[Model]:
]
def llama3_base_models() -> List[Model]:
def llama3_base_models() -> list[Model]:
return [
Model(
core_model_id=CoreModelId.llama3_8b,
@ -226,7 +225,7 @@ def llama3_base_models() -> List[Model]:
]
def llama3_1_base_models() -> List[Model]:
def llama3_1_base_models() -> list[Model]:
return [
Model(
core_model_id=CoreModelId.llama3_1_8b,
@ -324,7 +323,7 @@ def llama3_1_base_models() -> List[Model]:
]
def llama3_2_base_models() -> List[Model]:
def llama3_2_base_models() -> list[Model]:
return [
Model(
core_model_id=CoreModelId.llama3_2_1b,
@ -407,7 +406,7 @@ def llama3_2_base_models() -> List[Model]:
]
def llama2_instruct_models() -> List[Model]:
def llama2_instruct_models() -> list[Model]:
return [
Model(
core_model_id=CoreModelId.llama2_7b_chat,
@ -466,7 +465,7 @@ def llama2_instruct_models() -> List[Model]:
]
def llama3_instruct_models() -> List[Model]:
def llama3_instruct_models() -> list[Model]:
return [
Model(
core_model_id=CoreModelId.llama3_8b_instruct,
@ -507,7 +506,7 @@ def llama3_instruct_models() -> List[Model]:
]
def llama3_1_instruct_models() -> List[Model]:
def llama3_1_instruct_models() -> list[Model]:
return [
Model(
core_model_id=CoreModelId.llama3_1_8b_instruct,
@ -635,7 +634,7 @@ def arch_args_3b() -> dict:
}
def llama3_2_quantized_models() -> List[Model]:
def llama3_2_quantized_models() -> list[Model]:
return [
Model(
core_model_id=CoreModelId.llama3_2_1b_instruct,
@ -704,7 +703,7 @@ def llama3_2_quantized_models() -> List[Model]:
]
def llama3_2_instruct_models() -> List[Model]:
def llama3_2_instruct_models() -> list[Model]:
return [
Model(
core_model_id=CoreModelId.llama3_2_1b_instruct,
@ -766,7 +765,7 @@ def llama3_2_instruct_models() -> List[Model]:
]
def llama3_3_instruct_models() -> List[Model]:
def llama3_3_instruct_models() -> list[Model]:
return [
Model(
core_model_id=CoreModelId.llama3_3_70b_instruct,
@ -790,7 +789,7 @@ def llama3_3_instruct_models() -> List[Model]:
@lru_cache
def safety_models() -> List[Model]:
def safety_models() -> list[Model]:
return [
Model(
core_model_id=CoreModelId.llama_guard_4_12b,
@ -919,7 +918,7 @@ def safety_models() -> List[Model]:
@dataclass
class LlamaDownloadInfo:
folder: str
files: List[str]
files: list[str]
pth_size: int

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, Optional
from typing import Any
from pydantic import BaseModel, ConfigDict, Field
@ -159,13 +159,13 @@ def model_family(model_id) -> ModelFamily:
class Model(BaseModel):
core_model_id: CoreModelId
description: str
huggingface_repo: Optional[str] = None
arch_args: Dict[str, Any]
huggingface_repo: str | None = None
arch_args: dict[str, Any]
variant: str = ""
quantization_format: CheckpointQuantizationFormat = CheckpointQuantizationFormat.bf16
pth_file_count: int
metadata: Dict[str, Any] = Field(default_factory=dict)
metadata: dict[str, Any] = Field(default_factory=dict)
# silence pydantic until we remove the `model_` fields
model_config = ConfigDict(protected_namespaces=())

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from enum import Enum
from typing import Any, List, Optional, Protocol
from typing import Any, Protocol
from urllib.parse import urlparse
from pydantic import BaseModel, Field
@ -65,7 +65,7 @@ class DatasetsProtocolPrivate(Protocol):
class ScoringFunctionsProtocolPrivate(Protocol):
async def list_scoring_functions(self) -> List[ScoringFn]: ...
async def list_scoring_functions(self) -> list[ScoringFn]: ...
async def register_scoring_function(self, scoring_fn: ScoringFn) -> None: ...
@ -88,24 +88,24 @@ class ProviderSpec(BaseModel):
...,
description="Fully-qualified classname of the config for this provider",
)
api_dependencies: List[Api] = Field(
api_dependencies: list[Api] = Field(
default_factory=list,
description="Higher-level API surfaces may depend on other providers to provide their functionality",
)
optional_api_dependencies: List[Api] = Field(
optional_api_dependencies: list[Api] = Field(
default_factory=list,
)
deprecation_warning: Optional[str] = Field(
deprecation_warning: str | None = Field(
default=None,
description="If this provider is deprecated, specify the warning message here",
)
deprecation_error: Optional[str] = Field(
deprecation_error: str | None = Field(
default=None,
description="If this provider is deprecated and does NOT work, specify the error message here",
)
# used internally by the resolver; this is a hack for now
deps__: List[str] = Field(default_factory=list)
deps__: list[str] = Field(default_factory=list)
@property
def is_sample(self) -> bool:
@ -131,25 +131,25 @@ Fully-qualified name of the module to import. The module is expected to have:
- `get_adapter_impl(config, deps)`: returns the adapter implementation
""",
)
pip_packages: List[str] = Field(
pip_packages: list[str] = Field(
default_factory=list,
description="The pip dependencies needed for this implementation",
)
config_class: str = Field(
description="Fully-qualified classname of the config for this provider",
)
provider_data_validator: Optional[str] = Field(
provider_data_validator: str | None = Field(
default=None,
)
@json_schema_type
class InlineProviderSpec(ProviderSpec):
pip_packages: List[str] = Field(
pip_packages: list[str] = Field(
default_factory=list,
description="The pip dependencies needed for this implementation",
)
container_image: Optional[str] = Field(
container_image: str | None = Field(
default=None,
description="""
The container image to use for this implementation. If one is provided, pip_packages will be ignored.
@ -164,14 +164,14 @@ Fully-qualified name of the module to import. The module is expected to have:
- `get_provider_impl(config, deps)`: returns the local implementation
""",
)
provider_data_validator: Optional[str] = Field(
provider_data_validator: str | None = Field(
default=None,
)
class RemoteProviderConfig(BaseModel):
host: str = "localhost"
port: Optional[int] = None
port: int | None = None
protocol: str = "http"
@property
@ -197,7 +197,7 @@ API responses, specify the adapter here.
)
@property
def container_image(self) -> Optional[str]:
def container_image(self) -> str | None:
return None
@property
@ -205,16 +205,16 @@ API responses, specify the adapter here.
return self.adapter.module
@property
def pip_packages(self) -> List[str]:
def pip_packages(self) -> list[str]:
return self.adapter.pip_packages
@property
def provider_data_validator(self) -> Optional[str]:
def provider_data_validator(self) -> str | None:
return self.adapter.provider_data_validator
def remote_provider_spec(
api: Api, adapter: AdapterSpec, api_dependencies: Optional[List[Api]] = None
api: Api, adapter: AdapterSpec, api_dependencies: list[Api] | None = None
) -> RemoteProviderSpec:
return RemoteProviderSpec(
api=api,

View file

@ -4,14 +4,14 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from typing import Any
from llama_stack.distribution.datatypes import Api
from .config import MetaReferenceAgentsImplConfig
async def get_provider_impl(config: MetaReferenceAgentsImplConfig, deps: Dict[Api, Any]):
async def get_provider_impl(config: MetaReferenceAgentsImplConfig, deps: dict[Api, Any]):
from .agents import MetaReferenceAgentsImpl
impl = MetaReferenceAgentsImpl(

View file

@ -10,8 +10,8 @@ import re
import secrets
import string
import uuid
from collections.abc import AsyncGenerator
from datetime import datetime, timezone
from typing import AsyncGenerator, List, Optional, Union
import httpx
@ -112,7 +112,7 @@ class ChatAgent(ShieldRunnerMixin):
output_shields=agent_config.output_shields,
)
def turn_to_messages(self, turn: Turn) -> List[Message]:
def turn_to_messages(self, turn: Turn) -> list[Message]:
messages = []
# NOTE: if a toolcall response is in a step, we do not add it when processing the input messages
@ -161,7 +161,7 @@ class ChatAgent(ShieldRunnerMixin):
async def create_session(self, name: str) -> str:
return await self.storage.create_session(name)
async def get_messages_from_turns(self, turns: List[Turn]) -> List[Message]:
async def get_messages_from_turns(self, turns: list[Turn]) -> list[Message]:
messages = []
if self.agent_config.instructions != "":
messages.append(SystemMessage(content=self.agent_config.instructions))
@ -201,8 +201,8 @@ class ChatAgent(ShieldRunnerMixin):
async def _run_turn(
self,
request: Union[AgentTurnCreateRequest, AgentTurnResumeRequest],
turn_id: Optional[str] = None,
request: AgentTurnCreateRequest | AgentTurnResumeRequest,
turn_id: str | None = None,
) -> AsyncGenerator:
assert request.stream is True, "Non-streaming not supported"
@ -321,10 +321,10 @@ class ChatAgent(ShieldRunnerMixin):
self,
session_id: str,
turn_id: str,
input_messages: List[Message],
input_messages: list[Message],
sampling_params: SamplingParams,
stream: bool = False,
documents: Optional[List[Document]] = None,
documents: list[Document] | None = None,
) -> AsyncGenerator:
# Doing async generators makes downstream code much simpler and everything amenable to
# streaming. However, it also makes things complicated here because AsyncGenerators cannot
@ -374,8 +374,8 @@ class ChatAgent(ShieldRunnerMixin):
async def run_multiple_shields_wrapper(
self,
turn_id: str,
messages: List[Message],
shields: List[str],
messages: list[Message],
shields: list[str],
touchpoint: str,
) -> AsyncGenerator:
async with tracing.span("run_shields") as span:
@ -443,10 +443,10 @@ class ChatAgent(ShieldRunnerMixin):
self,
session_id: str,
turn_id: str,
input_messages: List[Message],
input_messages: list[Message],
sampling_params: SamplingParams,
stream: bool = False,
documents: Optional[List[Document]] = None,
documents: list[Document] | None = None,
) -> AsyncGenerator:
# if document is passed in a turn, we parse the raw text of the document
# and sent it as a user message
@ -760,7 +760,7 @@ class ChatAgent(ShieldRunnerMixin):
async def _initialize_tools(
self,
toolgroups_for_turn: Optional[List[AgentToolGroup]] = None,
toolgroups_for_turn: list[AgentToolGroup] | None = None,
) -> None:
toolgroup_to_args = {}
for toolgroup in (self.agent_config.toolgroups or []) + (toolgroups_for_turn or []):
@ -847,7 +847,7 @@ class ChatAgent(ShieldRunnerMixin):
tool_name_to_args,
)
def _parse_toolgroup_name(self, toolgroup_name_with_maybe_tool_name: str) -> tuple[str, Optional[str]]:
def _parse_toolgroup_name(self, toolgroup_name_with_maybe_tool_name: str) -> tuple[str, str | None]:
"""Parse a toolgroup name into its components.
Args:
@ -921,7 +921,7 @@ async def get_raw_document_text(document: Document) -> str:
def _interpret_content_as_attachment(
content: str,
) -> Optional[Attachment]:
) -> Attachment | None:
match = re.search(TOOLS_ATTACHMENT_KEY_REGEX, content)
if match:
snippet = match.group(1)

View file

@ -8,7 +8,7 @@ import json
import logging
import shutil
import uuid
from typing import AsyncGenerator, List, Optional, Union
from collections.abc import AsyncGenerator
from llama_stack.apis.agents import (
Agent,
@ -142,16 +142,11 @@ class MetaReferenceAgentsImpl(Agents):
self,
agent_id: str,
session_id: str,
messages: List[
Union[
UserMessage,
ToolResponseMessage,
]
],
toolgroups: Optional[List[AgentToolGroup]] = None,
documents: Optional[List[Document]] = None,
stream: Optional[bool] = False,
tool_config: Optional[ToolConfig] = None,
messages: list[UserMessage | ToolResponseMessage],
toolgroups: list[AgentToolGroup] | None = None,
documents: list[Document] | None = None,
stream: bool | None = False,
tool_config: ToolConfig | None = None,
) -> AsyncGenerator:
request = AgentTurnCreateRequest(
agent_id=agent_id,
@ -180,8 +175,8 @@ class MetaReferenceAgentsImpl(Agents):
agent_id: str,
session_id: str,
turn_id: str,
tool_responses: List[ToolResponse],
stream: Optional[bool] = False,
tool_responses: list[ToolResponse],
stream: bool | None = False,
) -> AsyncGenerator:
request = AgentTurnResumeRequest(
agent_id=agent_id,
@ -219,7 +214,7 @@ class MetaReferenceAgentsImpl(Agents):
self,
agent_id: str,
session_id: str,
turn_ids: Optional[List[str]] = None,
turn_ids: list[str] | None = None,
) -> Session:
agent = await self._get_agent_impl(agent_id)
session_info = await agent.storage.get_session_info(session_id)
@ -265,13 +260,13 @@ class MetaReferenceAgentsImpl(Agents):
async def create_openai_response(
self,
input: Union[str, List[OpenAIResponseInputMessage]],
input: str | list[OpenAIResponseInputMessage],
model: str,
previous_response_id: Optional[str] = None,
store: Optional[bool] = True,
stream: Optional[bool] = False,
temperature: Optional[float] = None,
tools: Optional[List[OpenAIResponseInputTool]] = None,
previous_response_id: str | None = None,
store: bool | None = True,
stream: bool | None = False,
temperature: float | None = None,
tools: list[OpenAIResponseInputTool] | None = None,
) -> OpenAIResponseObject:
return await self.openai_responses_impl.create_openai_response(
input, model, previous_response_id, store, stream, temperature, tools

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from typing import Any
from pydantic import BaseModel
@ -16,7 +16,7 @@ class MetaReferenceAgentsImplConfig(BaseModel):
persistence_store: KVStoreConfig
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> Dict[str, Any]:
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
return {
"persistence_store": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,

View file

@ -6,7 +6,8 @@
import json
import uuid
from typing import AsyncIterator, List, Optional, Union, cast
from collections.abc import AsyncIterator
from typing import cast
from openai.types.chat import ChatCompletionToolParam
@ -49,15 +50,15 @@ logger = get_logger(name=__name__, category="openai_responses")
OPENAI_RESPONSES_PREFIX = "openai_responses:"
async def _previous_response_to_messages(previous_response: OpenAIResponseObject) -> List[OpenAIMessageParam]:
messages: List[OpenAIMessageParam] = []
async def _previous_response_to_messages(previous_response: OpenAIResponseObject) -> list[OpenAIMessageParam]:
messages: list[OpenAIMessageParam] = []
for output_message in previous_response.output:
if isinstance(output_message, OpenAIResponseOutputMessage):
messages.append(OpenAIAssistantMessageParam(content=output_message.content[0].text))
return messages
async def _openai_choices_to_output_messages(choices: List[OpenAIChoice]) -> List[OpenAIResponseOutputMessage]:
async def _openai_choices_to_output_messages(choices: list[OpenAIChoice]) -> list[OpenAIResponseOutputMessage]:
output_messages = []
for choice in choices:
output_content = ""
@ -101,22 +102,22 @@ class OpenAIResponsesImpl:
async def create_openai_response(
self,
input: Union[str, List[OpenAIResponseInputMessage]],
input: str | list[OpenAIResponseInputMessage],
model: str,
previous_response_id: Optional[str] = None,
store: Optional[bool] = True,
stream: Optional[bool] = False,
temperature: Optional[float] = None,
tools: Optional[List[OpenAIResponseInputTool]] = None,
previous_response_id: str | None = None,
store: bool | None = True,
stream: bool | None = False,
temperature: float | None = None,
tools: list[OpenAIResponseInputTool] | None = None,
):
stream = False if stream is None else stream
messages: List[OpenAIMessageParam] = []
messages: list[OpenAIMessageParam] = []
if previous_response_id:
previous_response = await self.get_openai_response(previous_response_id)
messages.extend(await _previous_response_to_messages(previous_response))
# TODO: refactor this user_content parsing out into a separate method
user_content: Union[str, List[OpenAIChatCompletionContentPartParam]] = ""
user_content: str | list[OpenAIChatCompletionContentPartParam] = ""
if isinstance(input, list):
user_content = []
for user_input in input:
@ -179,7 +180,7 @@ class OpenAIResponsesImpl:
# dump and reload to map to our pydantic types
chat_response = OpenAIChatCompletion(**chat_response.model_dump())
output_messages: List[OpenAIResponseOutput] = []
output_messages: list[OpenAIResponseOutput] = []
if chat_response.choices[0].message.tool_calls:
output_messages.extend(
await self._execute_tool_and_return_final_output(model, stream, chat_response, messages, temperature)
@ -215,9 +216,9 @@ class OpenAIResponsesImpl:
return response
async def _convert_response_tools_to_chat_tools(
self, tools: List[OpenAIResponseInputTool]
) -> List[ChatCompletionToolParam]:
chat_tools: List[ChatCompletionToolParam] = []
self, tools: list[OpenAIResponseInputTool]
) -> list[ChatCompletionToolParam]:
chat_tools: list[ChatCompletionToolParam] = []
for input_tool in tools:
# TODO: Handle other tool types
if input_tool.type == "web_search":
@ -247,10 +248,10 @@ class OpenAIResponsesImpl:
model_id: str,
stream: bool,
chat_response: OpenAIChatCompletion,
messages: List[OpenAIMessageParam],
messages: list[OpenAIMessageParam],
temperature: float,
) -> List[OpenAIResponseOutput]:
output_messages: List[OpenAIResponseOutput] = []
) -> list[OpenAIResponseOutput]:
output_messages: list[OpenAIResponseOutput] = []
choice = chat_response.choices[0]
# If the choice is not an assistant message, we don't need to execute any tools
@ -314,7 +315,7 @@ class OpenAIResponsesImpl:
async def _execute_tool_call(
self,
function: OpenAIChatCompletionToolCallFunction,
) -> Optional[ToolInvocationResult]:
) -> ToolInvocationResult | None:
if not function.name:
return None
function_args = json.loads(function.arguments) if function.arguments else {}

View file

@ -8,7 +8,6 @@ import json
import logging
import uuid
from datetime import datetime, timezone
from typing import List, Optional
from pydantic import BaseModel
@ -25,9 +24,9 @@ class AgentSessionInfo(BaseModel):
session_id: str
session_name: str
# TODO: is this used anywhere?
vector_db_id: Optional[str] = None
vector_db_id: str | None = None
started_at: datetime
access_attributes: Optional[AccessAttributes] = None
access_attributes: AccessAttributes | None = None
class AgentPersistence:
@ -55,7 +54,7 @@ class AgentPersistence:
)
return session_id
async def get_session_info(self, session_id: str) -> Optional[AgentSessionInfo]:
async def get_session_info(self, session_id: str) -> AgentSessionInfo | None:
value = await self.kvstore.get(
key=f"session:{self.agent_id}:{session_id}",
)
@ -78,7 +77,7 @@ class AgentPersistence:
return check_access(session_info.session_id, session_info.access_attributes, get_auth_attributes())
async def get_session_if_accessible(self, session_id: str) -> Optional[AgentSessionInfo]:
async def get_session_if_accessible(self, session_id: str) -> AgentSessionInfo | None:
"""Get session info if the user has access to it. For internal use by sub-session methods."""
session_info = await self.get_session_info(session_id)
if not session_info:
@ -106,7 +105,7 @@ class AgentPersistence:
value=turn.model_dump_json(),
)
async def get_session_turns(self, session_id: str) -> List[Turn]:
async def get_session_turns(self, session_id: str) -> list[Turn]:
if not await self.get_session_if_accessible(session_id):
raise ValueError(f"Session {session_id} not found or access denied")
@ -125,7 +124,7 @@ class AgentPersistence:
turns.sort(key=lambda x: (x.completed_at or datetime.min))
return turns
async def get_session_turn(self, session_id: str, turn_id: str) -> Optional[Turn]:
async def get_session_turn(self, session_id: str, turn_id: str) -> Turn | None:
if not await self.get_session_if_accessible(session_id):
raise ValueError(f"Session {session_id} not found or access denied")
@ -145,7 +144,7 @@ class AgentPersistence:
value=step.model_dump_json(),
)
async def get_in_progress_tool_call_step(self, session_id: str, turn_id: str) -> Optional[ToolExecutionStep]:
async def get_in_progress_tool_call_step(self, session_id: str, turn_id: str) -> ToolExecutionStep | None:
if not await self.get_session_if_accessible(session_id):
return None
@ -163,7 +162,7 @@ class AgentPersistence:
value=str(num_infer_iters),
)
async def get_num_infer_iters_in_turn(self, session_id: str, turn_id: str) -> Optional[int]:
async def get_num_infer_iters_in_turn(self, session_id: str, turn_id: str) -> int | None:
if not await self.get_session_if_accessible(session_id):
return None

View file

@ -6,7 +6,6 @@
import asyncio
import logging
from typing import List
from llama_stack.apis.inference import Message
from llama_stack.apis.safety import Safety, SafetyViolation, ViolationLevel
@ -25,14 +24,14 @@ class ShieldRunnerMixin:
def __init__(
self,
safety_api: Safety,
input_shields: List[str] = None,
output_shields: List[str] = None,
input_shields: list[str] = None,
output_shields: list[str] = None,
):
self.safety_api = safety_api
self.input_shields = input_shields
self.output_shields = output_shields
async def run_multiple_shields(self, messages: List[Message], identifiers: List[str]) -> None:
async def run_multiple_shields(self, messages: list[Message], identifiers: list[str]) -> None:
async def run_shield_with_span(identifier: str):
async with tracing.span(f"run_shield_{identifier}"):
return await self.safety_api.run_shield(

View file

@ -4,14 +4,14 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from typing import Any
from .config import LocalFSDatasetIOConfig
async def get_provider_impl(
config: LocalFSDatasetIOConfig,
_deps: Dict[str, Any],
_deps: dict[str, Any],
):
from .datasetio import LocalFSDatasetIOImpl

Some files were not shown because too many files have changed in this diff Show more